Skip to main content

The key to smaller cameras that don’t suck could lie in this incredible material

graphene cmos sensor 21231071  application
Graphene is incredibly thin, transparent and also conducts electricity. Eduard Bonnin Turina / 123RF
Supermaterial graphene may have just found its way into imaging tech. A recent study published at the Cornell University Library shows that integrating graphene into a CMOS sensor could allow for higher resolution and lower noise — all within a camera small enough to fit inside a smartphone or even a smartwatch.

Graphene is a layer of graphite that, despite being as thin as a single atom, is one of the strongest known materials. While that allows the supermaterial (yes, like a superfood but for tech) to create sturdy, small objects, it exhibits a few other qualities that are essential to its integration into digital photo sensors. The material is transparent and also highly conductive.

Recommended Videos

As part of the newly developed digital image sensor, the graphene serves as a phototransistor — which is just a fancy way of saying it turns light into electrical current. The graphene is just one layer of the sensor, but its job of turning light into electricity could allow small sensors to achieve big resolution.

Each pixel on the sensor is covered with graphene. That layer is covered with a layer of quantum dots. Essentially, the top dot layer absorbs the light and transfers it as electrons into the graphene. The sensor’s circuit detects the change in the graphene and that light turns into electricity — or a digital photograph.

The researchers said that with the graphene-based sensor, they didn’t encounter the usual struggles with shrinking the size of each pixel in order to fit more on the sensor. Typically, the more megapixels that are squished onto a sensor, the more noise (or tiny dots) you see in the image, particularly in low light. (That’s why sensor size, not megapixels, is often a better indicator of quality). With the graphene-based sensor, the researchers said that increased noise wasn’t as much of an issue as with typical CMOS designs.

The researchers also managed to use the sensor to create an experimental camera that was sensitive to visible and UV light as well as infrared.

Essentially, graphene’s incredibly small nature and transparent quality allows developers to create smaller sensors — but unlike other attempts at small sensors, these little cameras have a higher resolution and also handle low light better.

Whether — or when — the new sensor design winds up in smartphones and other tiny imaging tech, the possibilities of graphene continue to impress.

Hillary K. Grigonis
Hillary never planned on becoming a photographer—and then she was handed a camera at her first writing job and she's been…
GoPro launches ultralight, affordable Hero 4K Camera for $199
The 2024 GoPro hero is frozen in ice.

GoPro enthusiasts have a new camera to consider after the company introduced its miniature, ultralight 4K Hero late last week. It is the company's smallest and most affordable offering, costing just $199.

The Hero is waterproof and combines GoPro's simplest user interface with 4K video, 2x slo-mo at 2.7K resolution, and 12-megapixel photos. It is available on retail shelves around the world and online at GoPro's website.

Read more
The best camera phones in 2024: our top 9 photography picks
A person holding the Samsung Galaxy S24 Ultra and Xiaomi 14 Ultra.

In the past decade or so, cameras on smartphones have evolved so much that they can pretty much replace a standalone digital camera for most people. The results you can get on some of the best smartphones these days are just so impressive, and being able to be with you at all times means you'll never miss a moment.

But what if you want the best possible camera phone money can buy? A camera that won't let you down no matter what you're taking a picture of? You've come to the right place. Here are the very best camera phones you can buy in 2024.

Read more
An ace photographer is about to leave the ISS. Here are his best shots
The moon and Earth as seen from the ISS.

NASA astronaut Matthew Dominick is preparing to return to Earth after spending seven months living and working aboard the International Space Station (ISS).

After arriving at the orbital outpost, Dominick -- who is on his first mission to space -- quickly earned a reputation for being an ace photographer. He's been using the facility’s plethora of high-end cameras and lenses to capture amazing shots from his unique vantage point some 250 miles above Earth. Sharing his content on social media, the American astronaut has always been happy to reveal how he captured the imagery and offer extra insight for folks interested to know more.

Read more