Skip to main content

An artificial synapse on a chip is able to learn autonomously

synapse on a chip learns autonomously 10717193 l
Ktsdesign/123RF
Brain-inspired deep learning neural networks have been behind many of the biggest breakthroughs in artificial intelligence seen over the past 10 years.

But a new research project from the National Center for Scientific Research (CNRS), the University of Bordeaux, and Norwegian information technology company Evry could take that these breakthroughs to next level — thanks to the creation of an artificial synapse on a chip.

Recommended Videos

“There are many breakthroughs from software companies that use algorithms based on artificial neural networks for pattern recognition,” Dr. Vincent Garcia, a CNRS research scientist who worked on the project, told Digital Trends. “However, as these algorithms are simulated on standard processors they require a lot of power. Developing artificial neural networks directly on a chip would make this kind of tasks available to everyone, and much more power efficient.”

Synapses in the brain function as the connections between neurons. Learning takes place when these connections are reinforced, and improved when synapses are stimulated. The newly developed electronic devices (called “memristors”) emulate the behavior of these synapses, by way of a variable resistance that depends on the history of electronic excitations they receive.

“Here we use a specific kind of memristors based on purely electronic effects,” Garcia continued. “In these devices, the active part is a ferroelectric film, which contains electric dipoles, that can be switched with an electric field. Depending on the orientation of these dipoles, the resistance is on or off. In addition, we can control configurations in which domains with up or down dipoles coexist, with intermediate voltage pulses. This gives rise to an analog device with many resistance levels. In our paper, we were able to understand how the resistance of the memristor evolves with voltage pulses and make a model based on the dynamics of ferroelectric domains.”

The result was an array of 45 such memristors which were able to learn to detect simple patterns without any assistance; something referred to as “unsupervised learning” in the machine learning community.

Now that the team is able to predict the behavior of an individual electronic synapse, the next goal is to develop neural networks on a chip that contain hundreds of these ferroelectric memristors. Once this is achieved, they will test it by connecting the neural network to an event-based camera to have a go at detecting moving objects at high-speed.

“The final goal of this project would be to integrate this bio-inspired camera in a car to assist the driver when unexpected objects or persons are crossing the road,” Garcia said.

Should all go according to plan, it may not be long before the neural networks are incorporated as a standard part of the processors found in our smartphones and other mobile devices.

Luke Dormehl
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
The best portable power stations
EcoFlow DELTA 2 on table at campsite for quick charging.

Affordable and efficient portable power is a necessity these days, keeping our electronic devices operational while on the go. But there are literally dozens of options to choose from, making it abundantly difficult to decide which mobile charging solution is best for you. We've sorted through countless portable power options and came up with six of the best portable power stations to keep your smartphones, tablets, laptops, and other gadgets functioning while living off the grid.
The best overall: Jackery Explorer 1000

Jackery has been a mainstay in the portable power market for several years, and today, the company continues to set the standard. With three AC outlets, two USB-A, and two USB-C plugs, you'll have plenty of options for keeping your gadgets charged.

Read more
CES 2023: HD Hyundai’s Avikus is an A.I. for autonomous boat and marine navigation
Demonstration of NeuBoat level 2 autonomous navigation system at the Fort Lauderdale International Boat Show

This content was produced in partnership with HD Hyundai.
Autonomous vehicle navigation technology is certainly nothing new and has been in the works for the better part of a decade at this point. But one of the most common forms we see and hear about is the type used to control steering in road-based vehicles. That's not the only place where technology can make a huge difference. Autonomous driving systems can offer incredible benefits to boats and marine vehicles, too, which is precisely why HD Hyundai has unveiled its Avikus AI technology -- for marine and watercraft vehicles.

More recently, HD Hyundai participated in the Fort Lauderdale International Boat Show, to demo its NeuBoat level 2 autonomous navigation system for recreational boats. The name mashes together the words "neuron" and "boat" and is quite fitting since the Avikus' A.I. navigation tech is a core component of the solution, it will handle self-recognition, real-time decisions, and controls when on the water. Of course, there are a lot of things happening behind the scenes with HD Hyundai's autonomous navigation solution, which we'll dive into below -- HD Hyundai will also be introducing more about the tech at CES 2023.

Read more
This AI cloned my voice using just three minutes of audio
acapela group voice cloning ad

There's a scene in Mission Impossible 3 that you might recall. In it, our hero Ethan Hunt (Tom Cruise) tackles the movie's villain, holds him at gunpoint, and forces him to read a bizarre series of sentences aloud.

"The pleasure of Busby's company is what I most enjoy," he reluctantly reads. "He put a tack on Miss Yancy's chair, and she called him a horrible boy. At the end of the month, he was flinging two kittens across the width of the room ..."

Read more