Skip to main content

Meet the tech that revealed a hidden chamber inside Egypt’s Great Pyramid

By now, there’s a pretty good chance you’ve heard about the recent discovery of a large hidden chamber in the Great Pyramid of Giza, Egypt. But how exactly did the scientists responsible discover an area that had consistently eluded researchers and other explorers investigating the oldest of the Seven Wonders of the Ancient World? The answer involves some cutting edge particle physics, computer modeling, and a whole lot of math…

What exactly has been achieved here?

As described in a new paper published in Nature, what the Japanese and French research team have discovered is a large secret space hidden within the Great Pyramid of Giza. This space is located above a large 100-foot long room called the Grand Gallery, and is comparable in size. Up until now, no-one was aware of the existence of this space. It is the first major internal structural discovery in the Great Pyramid since the 19th century.

Recommended Videos

Using a technique called “muon tomography,” the scientists were able to map it out without causing any damage. This is a substantially different approach to the British Egyptologists of the early 1800s, who frequently “investigated” pyramids by using gunpowder to gain access to different sections that had been sealed off.

Next, the researchers want to explore the space in more detail by using tiny flying drones, although this will take time to achieve.

What are muons?

Earth is constantly bombarded with particles, which pass harmlessly through our bodies. A large number of these particles are called muons, which hit Earth’s surface at a rate of approximately 1 per square centimeter each minute of the day. Muons are elementary particles similar to electrons, but don’t lose as much energy when they travel, making them able to penetrate more deeply than other forms of radiation.

They were discovered by American physicists Carl D. Anderson and Seth Neddermeyer in 1936, as part of the pair’s studies into cosmic radiation. Muons can be detected based on the fact that their movement through gas ionizes the gas molecules. This was successfully demonstrated in 1937 through an experiment known as the “cloud chamber,” in which supersaturated vapor in a sealed environment is used to visualize ionizing radiation.

So how do you use them to scan for objects?

Muons are able to penetrate dense materials, such as meters of rock or even steel, more deeply than other types of radiation. Muon Scattering Tomography (MST) is one way of harnessing this ability by using it to peer through much thicker materials than would be possible using x-ray based tomography techniques such as computed tomography (CT) scanning. MST works by scattering the negatively-charged muon particles, and then observing the way they interact with and deflect off other materials.

scanpyramids
scanpyramids

While they are able to pass through many, they can also be deflected by heavy elements such as uranium, or metals like lead. By using electrodes to collect the signal made by the scattered muons, and then applying some clever geometry and statistical models to measure how they are deflected, it’s possible to work out their trajectory with a high level of accuracy. This allows researchers to build up three-dimensional models of hidden objects, both in terms of shape and material.

Is this the first time that Muon Scattering Tomography has been used?

It’s not. The use of something called muon transmission radiography was actually used back in the late 1960s in a not dissimilar way to look for hidden chambers in the Pyramid of Chephren in Giza. (Check out this 1970 paper, “Search for Hidden Chambers in the Pyramids.”)

The development of Muon Scattering Tomography as an imaging tool, however, is far more recent — and dates back to Los Alamos National Laboratory research in 2003. Since then, it has been used for multiple applications. In notable recent use-cases, it was employed by Toshiba for analyzing the reactor cores at the Fukushima nuclear complex. A company called Decision Sciences International Corporation has also used muon tomography in a scanner for searching for explosives, contraband material, and more, and then producing a 3D image of what has been scanned.

A similar form of muon tomography has additionally been used as a way of imaging magma chambers in volcanos to predict eruptions, and for discovering hidden tunnels inside the Bent Pyramid, named as a result of its unusual shape.

Luke Dormehl
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
The best portable power stations
EcoFlow DELTA 2 on table at campsite for quick charging.

Affordable and efficient portable power is a necessity these days, keeping our electronic devices operational while on the go. But there are literally dozens of options to choose from, making it abundantly difficult to decide which mobile charging solution is best for you. We've sorted through countless portable power options and came up with six of the best portable power stations to keep your smartphones, tablets, laptops, and other gadgets functioning while living off the grid.
The best overall: Jackery Explorer 1000

Jackery has been a mainstay in the portable power market for several years, and today, the company continues to set the standard. With three AC outlets, two USB-A, and two USB-C plugs, you'll have plenty of options for keeping your gadgets charged.

Read more
CES 2023: HD Hyundai’s Avikus is an A.I. for autonomous boat and marine navigation
Demonstration of NeuBoat level 2 autonomous navigation system at the Fort Lauderdale International Boat Show

This content was produced in partnership with HD Hyundai.
Autonomous vehicle navigation technology is certainly nothing new and has been in the works for the better part of a decade at this point. But one of the most common forms we see and hear about is the type used to control steering in road-based vehicles. That's not the only place where technology can make a huge difference. Autonomous driving systems can offer incredible benefits to boats and marine vehicles, too, which is precisely why HD Hyundai has unveiled its Avikus AI technology -- for marine and watercraft vehicles.

More recently, HD Hyundai participated in the Fort Lauderdale International Boat Show, to demo its NeuBoat level 2 autonomous navigation system for recreational boats. The name mashes together the words "neuron" and "boat" and is quite fitting since the Avikus' A.I. navigation tech is a core component of the solution, it will handle self-recognition, real-time decisions, and controls when on the water. Of course, there are a lot of things happening behind the scenes with HD Hyundai's autonomous navigation solution, which we'll dive into below -- HD Hyundai will also be introducing more about the tech at CES 2023.

Read more
This AI cloned my voice using just three minutes of audio
acapela group voice cloning ad

There's a scene in Mission Impossible 3 that you might recall. In it, our hero Ethan Hunt (Tom Cruise) tackles the movie's villain, holds him at gunpoint, and forces him to read a bizarre series of sentences aloud.

"The pleasure of Busby's company is what I most enjoy," he reluctantly reads. "He put a tack on Miss Yancy's chair, and she called him a horrible boy. At the end of the month, he was flinging two kittens across the width of the room ..."

Read more