Skip to main content

Robotic exosuits will make us better, stronger, faster, right? Not necessarily!

exoskeletons military
Image used with permission by copyright holder

Whether it’s the Power Loader from Aliens or Marvel Comics’ amazing Iron Man armor, science fiction has long painted a rose-tinted picture when it comes to the possibility of wearable exoskeleton suits. Like upgraded knights’ armor, these robotic exosuits are promised to transform ordinary fleshy mortals into augmented beings with man-made superpowers: capable of moving faster, lifting heavier and working longer than would ordinarily be humanly possible.

Today, such exosuits are no longer confined to the pages of comic books or far-future science fiction flicks directed by James Cameron. The military is actively investigating the technology for enhancing its soldiers, Edge of Tomorrow-style. On construction sites, exosuits are being used to help workers carry out their job with greater efficiency and minus the wear-and-tear that would normally come along with it. Heck, robot exosuits could even make you a better skier. Ever wanted to shred the slopes like a cyborg? Now you can!

Recommended Videos

But such tools may not be quite the magic bullet many have hoped for. If the concept of wearing a suit that upgrades your abilities like the Six Million Dollar Man sounds a little too good to be true… well, unfortunately, that may well be because it is.

Exosuits are no longer confined to the pages of comic books or far-future science fiction flicks.

In a new research project carried out by researchers at Ohio State University’s Spine Research Institute, participants were tested in a study involving a commercially available exoskeleton — consisting of a mechanical arm attached to a harness — which is used by workers to help them carry heavy objects hands-free.

The idea is that doing so can greatly reduce the amount of stress put on workers’ arms. However, while the augmented exosuit did indeed manage to achieve this goal, it didn’t entirely erase the wear-and-tear on wearers’ bodies — but instead displaced it onto other parts of their body.

Better, stronger, faster?

“We conducted a biomechanical study on an exoskeleton that was initially designed to help offload the upper body, [particularly the] shoulders and arms,” Eric Weston, a graduate research associate in Ohio State’s Integrated Systems Engineering department, told Digital Trends. “What we were particularly interested in assessing was the potential trade-off that exists with the low back with the use of this device. We saw that such a trade-off does indeed exist. The loads on the discs of the spine in the low back increased by up to 53 percent when the exoskeleton was used compared to if the tasks tested were performed without the intervention.”

The experimental testing of an exoskeleton at Ohio State
The experimental setup had in four situations: the use of lightweight tools at eye height without the mechanical arm (A), the use of heavy tools approximately at hip height without the mechanical arm (B), and the same activities using the mechanical arm (C and D). Weston et al., Applied Ergonomics 2018.

While a 53 percent increased load on the back is bad enough, though, the researchers found that stress on different muscles in the torso actually increased anywhere from 56 percent to 120 percent while users were wearing the exosuit. That should certainly be enough to worry anyone who’s asked to wear an exosuit to carry out heavy work, regardless of what industry they work in!

The study involved 12 subjects who were asked to simulate working using both a torque wrench, a relatively light tool weighing 10 lbs, and a heavier impact wrench, weighing around 30 lbs. The experiment was carried out in a laboratory setting with users wearing and then not wearing the industrial exoskeleton.

“The loads on the discs of the spine in the lower back increased by up to 53 percent when the exoskeleton was used compared to if the tasks tested were performed without the intervention.”

“We recorded how the subjects moved, how they activated their muscles to do the task, and ultimately used a biomechanical model of the low back to predict the forces that were being produced by the trunk muscles and the loads inside their spines,” Weston continued.

“To us, the results were not particularly surprising,” he said, referring to the displacing — rather than eliminating — of impact on the wearers’ body. “Though the subjects no longer need to support the weight of the tool with their upper body when wearing the exoskeleton, this potentially heavy tool is located much further from the back, and the back muscles need to compensate for this by producing more force. This will also create a greater load on the spine.”

Amazing potential, but more work needed

This isn’t to suggest that exosuits aren’t capable of carrying out some genuinely amazing feats, of course. Some have allowed individuals with partial paralysis to rise from their wheelchairs and walk again — or even to compete in sports. That’s absolutely phenomenal, and should not be sold short.

Weston et al., Applied Ergonomics 2018.

Over the long run, the underlying technologies in exosuits will also no doubt continue to be honed so as to produce lighter, cheaper, more versatile and durable wearables able to assist individuals in a range of pursuits.

But, right now at least, it seems that some of the report cards are more likely to read “good first effort” or “must try harder.”

“As researchers, we often talk about solving problems using a systems approach — meaning that solving one problem within a system should not create another problem elsewhere, ” Weston noted while explaining lessons he hopes manufactures will learn. “The results of this study highlight the need to design industrial exoskeletons considering how loads might be shifted or transferred with their use. It is important that the exoskeleton truly supports its wearer as opposed to pushing or pulling on them in ways that force them to fight it.”

Other co-authors on the Ohio State study include Gregory Knapik, Mina Alizadeh and Xueke Wang. Their research paper was published in the journal Applied Ergonomics.

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Juiced Bikes offers 20% off on all e-bikes amid signs of bankruptcy
Juiced Bikes Scrambler ebike

A “20% off sitewide” banner on top of a company’s website should normally be cause for glee among customers. Except if you’re a fan of that company’s products and its executives remain silent amid mounting signs that said company might be on the brink of bankruptcy.That’s what’s happening with Juiced Bikes, the San Diego-based maker of e-bikes.According to numerous customer reports, Juiced Bikes has completely stopped responding to customer inquiries for some time, while its website is out of stock on all products. There are also numerous testimonies of layoffs at the company.Even more worrying signs are also piling up: The company’s assets, including its existing inventory of products, is appearing as listed for sale on an auction website used by companies that go out of business.In addition, a court case has been filed in New York against parent company Juiced Inc. and Juiced Bike founder Tora Harris, according to Trellis, a state trial court legal research platform.Founded in 2009 by Harris, a U.S. high-jump Olympian, Juiced Bikes was one of the early pioneers of the direct-to-consumer e-bike brands in the U.S. market.The company’s e-bikes developed a loyal fandom through the years. Last year, Digital Trends named the Juiced Bikes Scorpion X2 as the best moped-style e-bike for 2023, citing its versatility, rich feature set, and performance.The company has so far stayed silent amid all the reports. But should its bankruptcy be confirmed, it could legitimately be attributed to the post-pandemic whiplash experienced by the e-bike industry over the past few years. The Covid-19 pandemic had led to a huge spike in demand for e-bikes just as supply chains became heavily constrained. This led to a ramp-up of e-bike production to match the high demand. But when consumer demand dropped after the pandemic, e-bike makers were left with large stock surpluses.The good news is that the downturn phase might soon be over just as the industry is experiencing a wave of mergers and acquisitions, according to a report by Houlihan Lokey.This may mean that even if Juiced Bikes is indeed going under, the brand and its products might find a buyer and show up again on streets and trails.

Read more
Volkswagen plans 8 new affordable EVs by 2027, report says
volkswagen affordable evs 2027 id 2all

Back in the early 1970s, when soaring oil prices stifled consumer demand for gas-powered vehicles, Volkswagen took a bet on a battery system that would power its first-ever electric concept vehicle, the Elektro Bus.
Now that the German automaker is facing a huge slump in sales in Europe and China, it’s again turning to affordable electric vehicles to save the day.Volkswagen brand chief Thomas Schaefer told German media that the company plans to bring eight new affordable EVs to market by 2027."We have to produce our vehicles profitably and put them on the road at affordable prices," he is quoted as saying.
One of the models will be the ID.2all hatchback, the development of which is currently being expedited to 36 months from its previous 50-month schedule. Last year, VW unveiled the ID.2all concept, promising to give it a price tag of under 25,000 euros ($27,000) for its planned release in 2025.VW CEO Larry Blume has also hinted at a sub-$22,000 EV to be released after 2025.It’s unclear which models would reach U.S. shores. Last year, VW America said it planned to release an under-$35,000 EV in the U.S. by 2027.The price of batteries is one of the main hurdles to reduced EV’s production costs and lower sale prices. VW is developing its own unified battery cell in several European plants, as well as one plant in Ontario, Canada.But in order for would-be U.S. buyers to obtain the Inflation Reduction Act's $7,500 tax credit on the purchase of an EV, the vehicle and its components, including the battery, must be produced at least in part domestically.VW already has a plant in Chattanooga, Tennesse, and is planning a new plant in South Carolina. But it’s unclear whether its new unified battery cells would be built or assembled there.

Read more
Nissan launches charging network, gives Ariya access to Tesla SuperChargers
nissan charging ariya superchargers at station

Nissan just launched a charging network that gives owners of its EVs access to 90,000 charging stations on the Electrify America, Shell Recharge, ChargePoint and EVgo networks, all via the MyNissan app.It doesn’t stop there: Later this year, Nissan Ariya vehicles will be getting a North American Charging Standard (NACS) adapter, also known as the Tesla plug. And in 2025, Nissan will be offering electric vehicles (EVs) with a NACS port, giving access to Tesla’s SuperCharger network in the U.S. and Canada.Starting in November, Nissan EV drivers can use their MyNissan app to find charging stations, see charger availability in real time, and pay for charging with a payment method set up in the app.The Nissan Leaf, however, won’t have access to the functionality since the EV’s charging connector is not compatible. Leaf owners can still find charging stations through the NissanConnectEV and Services app.Meanwhile, the Nissan Ariya, and most EVs sold in the U.S., have a Combined Charging System Combo 1 (CCS1) port, which allows access to the Tesla SuperCharger network via an adapter.Nissan is joining the ever-growing list of automakers to adopt NACS. With adapters, EVs made by General Motors, Ford, Rivian, Honda and Volvo can already access the SuperCharger network. Kia, Hyundai, Toyota, BMW, Volkswagen, and Jaguar have also signed agreements to allow access in 2025.
Nissan has not revealed whether the adapter for the Ariya will be free or come at a cost. Some companies, such as Ford, Rivian and Kia, have provided adapters for free.
With its new Nissan Energy Charge Network and access to NACS, Nissan is pretty much covering all the bases for its EV drivers in need of charging up. ChargePoint has the largest EV charging network in the U.S., with over 38,500 stations and 70,000 charging ports at the end of July. Tesla's charging network is the second largest, though not all of its charging stations are part of the SuperCharger network.

Read more