Skip to main content

Caltech’s tiny new gyroscope is smaller than a single grain of rice

Caltech

It’s no secret that the components used in our everyday technology keep getting smaller. But just how much tinier they’re getting might surprise you. At the California Institute of Technology (Caltech), researchers have found a way to significantly shrink optical gyroscopes, the devices used for measuring or maintaining orientation and angular velocity. Simple gyroscopes are found in devices like phones and tablets. However, the higher quality optical gyroscopes used in navigation are still relatively large — slightly bigger than a golf ball. They function very well, but this larger form factor makes them inappropriate for use in certain portable devices.

That’s where the Caltech researchers come into play — since they have found a way to shrink down these high-end gyroscopes to something smaller than a single grain of rice. This is an astonishing 500 times smaller than current state-of-the-art gyroscopes.

Recommended Videos

“Optical gyroscopes are one of the most accurate types of gyroscopes, and they are used in various navigation systems,” Professor Ali Hajimiri, who worked on the project, told Digital Trends. “However, a regular optical gyroscope is very expensive and bulky. Miniaturizing this type of gyroscope can reduce its cost and size and can potentially replace mechanical gyros. Optical gyroscopes operate based on a relativistic effect known as the Sagnac effect, whereby the output signal is proportional to the size of the gyro. Therefore, reducing the size of the gyro will directly affect the strength of the output signal. In our work, we presented a technique that uses the reciprocity of passive networks to decrease the level of noise, making the signal detectable.”

The Sagnac effect is named after the French physicist Georges Sagnac. It calculates orientation by splitting a beam of light in two and then sending them in separate directions. By measuring the variations in the two beams of light, it’s possible to work out rotation and orientation with a high degree of accuracy. To shrink down the device, the Caltech researchers found a way to improve the signal-to-noise ratio of this system, thereby making it more efficient.

“This demonstration shows the potential of integrated optical gyros, and can open all kind of applications that need low-cost, small, and highly accurate gyros — like gaming devices, autonomous vehicles, wearables, CubeSats and nanosats,” Hajimiri continued. “[The] next step is to improve the sensitivity and make it smaller, as well as enhancing integration capabilities. We are thinking about commercializing our device.”

It might take a while to get to that point, but it seems that tinier, more efficient gyroscopes are definitely in our future. A paper describing the work was recently published in the journal Nature Photonics.

Luke Dormehl
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
The best portable power stations
EcoFlow DELTA 2 on table at campsite for quick charging.

Affordable and efficient portable power is a necessity these days, keeping our electronic devices operational while on the go. But there are literally dozens of options to choose from, making it abundantly difficult to decide which mobile charging solution is best for you. We've sorted through countless portable power options and came up with six of the best portable power stations to keep your smartphones, tablets, laptops, and other gadgets functioning while living off the grid.
The best overall: Jackery Explorer 1000

Jackery has been a mainstay in the portable power market for several years, and today, the company continues to set the standard. With three AC outlets, two USB-A, and two USB-C plugs, you'll have plenty of options for keeping your gadgets charged.

Read more
CES 2023: HD Hyundai’s Avikus is an A.I. for autonomous boat and marine navigation
Demonstration of NeuBoat level 2 autonomous navigation system at the Fort Lauderdale International Boat Show

This content was produced in partnership with HD Hyundai.
Autonomous vehicle navigation technology is certainly nothing new and has been in the works for the better part of a decade at this point. But one of the most common forms we see and hear about is the type used to control steering in road-based vehicles. That's not the only place where technology can make a huge difference. Autonomous driving systems can offer incredible benefits to boats and marine vehicles, too, which is precisely why HD Hyundai has unveiled its Avikus AI technology -- for marine and watercraft vehicles.

More recently, HD Hyundai participated in the Fort Lauderdale International Boat Show, to demo its NeuBoat level 2 autonomous navigation system for recreational boats. The name mashes together the words "neuron" and "boat" and is quite fitting since the Avikus' A.I. navigation tech is a core component of the solution, it will handle self-recognition, real-time decisions, and controls when on the water. Of course, there are a lot of things happening behind the scenes with HD Hyundai's autonomous navigation solution, which we'll dive into below -- HD Hyundai will also be introducing more about the tech at CES 2023.

Read more
This AI cloned my voice using just three minutes of audio
acapela group voice cloning ad

There's a scene in Mission Impossible 3 that you might recall. In it, our hero Ethan Hunt (Tom Cruise) tackles the movie's villain, holds him at gunpoint, and forces him to read a bizarre series of sentences aloud.

"The pleasure of Busby's company is what I most enjoy," he reluctantly reads. "He put a tack on Miss Yancy's chair, and she called him a horrible boy. At the end of the month, he was flinging two kittens across the width of the room ..."

Read more