Skip to main content

New technique could allow astronomers to send messages through the void of space

What do you do when you really want to send a message, but your smartphone just isn’t up to the job? Simple: You vibrate space itself so as to harness it as a communication method. OK, so that doesn’t actually sound all that simple at all, but it could nonetheless be one way of sending and receiving messages through the vastness of deep space in the future. That’s according to researchers from Illinois State University, who recently described such a proposal in a research paper, published in the journal Physical Review Letters.

It describes using a Dirac vacuum as a transport medium for information. A Dirac vacuum refers to insights provided by the British physicist and Nobel Prize Laureate Paul Dirac, who suggested that vacuums such as deep space are not actually empty, but rather filled with energy. By using electromagnetic fields to manipulate a vacuum could create ripples in its structure, which could then be measured using the energies of particle pairs generated by a phenomenon called the Schwinger effect. Were such changes to be modulated and correlated with individual letters, researchers Charles Su and Rainer Grobe hypothesize that it might be possible to create a sort of vacuum-based Morse code. To be clear, this would not require a medium such as light to transport the message, but would instead send it out as a ripple in space itself.

Recommended Videos

As the researchers write in the abstract for their paper: “Usually, the transport of information requires either an electromagnetic field or matter as a carrier. It turns out that the Dirac vacuum modes could be exploited as a potentially loss-free carrier of information between two distant locations in space. At the first location, a spatially localized electric field is placed, whose temporal shape is modulated, for example, as a binary sequence of distinguishable high and low values of the amplitude. The resulting distortion of the vacuum state reflecting this information propagates then to a second location, where this digital signal can be read off sequentially by a static electric field pulse. If this second field is supercritical, it can create electron-positron pairs from the manipulated vacuum state. The original information transported by the vacuum mode is then imprinted on the temporal behavior of the created particle yield for a selected energy.”

To be clear, the calculations described in their paper are preliminary, so expecting this technology to roll out in the near future is wishful thinking. But as an exciting possible approach to future communication which could trigger more research? Yep, this certainly qualifies!

Luke Dormehl
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Astronomers discover three exoplanets in final data from Kepler Space Telescope
An artist's concept of the Kepler spacecraft.

The Kepler Space Telescope was retired in 2018 after a nine-year mission that saw it discover an incredible 2,600 confirmed exoplanets, kicking off the modern era of exoplanet research. But now there are three more exoplanets to add to the mission's total, even after the telescope has been dark for the last five years. Astronomers were recently able to use data from the very last observations of Kepler to discover three more planets.

Two of the three exoplanets have been confirmed -- K2-416 b and K2-417 b -- with a third planet, EPIC 246251988 b, remaining an exoplanet candidate. (To be upgraded from exoplanet candidate to confirmed exoplanet, an initial observation has to be verified through observations by two other telescopes.) The planets range from 2.6 times the size of Earth to 4 times the size of Earth, making them small in comparison to most discovered exoplanets.

Read more
JUICE mission to Jupiter sends back first images of Earth from space
Shortly after launch on 14 April, ESA’s Jupiter Icy Moons Explorer, Juice, captured this stunning view of Earth. The coastline around the Gulf of Aden can be made out to the right of centre, with patchy clouds above land and sea.

The European Space Agency's Jupiter Icy Moons Explorer (JUICE) spacecraft, which launched last week, has sent back its first images from space -- and they are some stunning views of the Earth. The JUICE mission is on its way to explore three of Jupiter's largest moons -- Ganymede, Callisto, and Europa -- but it will be traveling for eight years before it arrives at the Jupiter system in 2031.

In the meantime, the spacecraft's cameras have been taking images pointed back at Earth. The images were captured shortly after launch on Friday, April 14, using JUICE's monitoring cameras. The two cameras are designed to watch over the spacecraft as it deploys rather than for scientific purposes, so they capture image at a relatively low resolution of 1024 x 1024 pixels. Even so, they managed to get some gorgeous views of the planet as JUICE speeds away from it.

Read more
Two of Uranus’ moons could host oceans, new research suggests
An artist’s impression of Uranus and its five largest moons (innermost to outermost) Miranda, Ariel, Umbriel, Titania and Oberon.

When it comes to searching for habitable locations in our solar system and beyond, one of the key requirements for life as we know it is the presence of liquid water. Whether that's a liquid water ocean on the planet's surface like we have here on Earth, or an ocean beneath a thick, icy crust, which is thought to be found on some of Jupiter's icy moons, this is the first and most important indicator of potential habitability.

So it's exciting to learn that two of Uranus' moons may also host oceans. Though it is rarely studied because it is located so far from the sun, Uranus is known to host 27 moons, as well as rings, though all these moons are small at less than half the size of our moon. Researchers looked through almost 40-year-old data from the NASA Voyager 2 mission, which passed Uranus in 1985, to learn more about the energetic particles and magnetic fields around the planet.

Read more