Skip to main content

Does a steam-powered spacecraft hold the key to exploring the solar system?

UCF Steam-powered spacecraft WINE
Image used with permission by copyright holder

Over 19,000 known asteroids carrying an almost inconceivable wealth of resources are within our reach as they orbit the sun. They’re packed with elements like platinum, gold, palladium, and silver — untouched riches locked safely inside celestial treasure chests.

Ryugu, a half-mile wide asteroid that poses a potential risk to Earth due to the proximity of its orbit, is estimated to contain $83 billion worth of nickel, iron, cobalt, and nitrogen. The larger but less threatening Anteros is thought to have some $5,570 billion worth of magnesium silicate, aluminum, and iron beneath its surface.

By refueling its steam propulsion reserves as it goes, WINE is designed for near-indefinite exploration.

A burgeoning industry of aerospace veterans and newcomers aims to mine these asteroids like space prospectors. Some want to extract elements that are valuable on Earth before transporting them back to the planet. Others have their sights set on resources that will be vital to off-world colonies. Arguably the most valuable resource in space? Water.

“If you’re in the middle of the desert and you’re running out of water, what’s more valuable, a pound of gold or a pound of water?” Kris Zacny, director of the Exploration Technology Group for the private space company Honeybee Robotics, tells Digital Trends. And that holds true in other extreme environments. “You have to think differently about space.”

A microwave-sized spacecraft prototype capable of using steam as a propellent may help the first miners survey potential dig sites and identify space rocks best fit for mining missions.

Developed through a partnership between the University of Central Florida’s Planetary Science Group and Honeybee Robotics, the World Is Not Enough (WINE) spacecraft is equipped with deployable solar panels for gathering energy, and coring bits to drill into icy regolith (the surface layer found on many extraterrestrial bodies) and extract water vapor. After freezing and storing the vapor, WINE can then heat it again to create a high-pressure steam that, when forced through a nozzle, can propel the spacecraft to new sights or even new asteroids.

We demonstrated prototype of WINE (the World Is Not Enough) spacecraft in vacuum. WINE extracts water from asteroids and uses it for steam propulsion. Thanks @DrPhiltill for asteroid simulant, doing all simulations, and being an awesome PI and thanks to @NASA SBIR for funding it! pic.twitter.com/vrFB8WhEGt

— Kris Zacny (@kriszacny) December 31, 2018

Future versions of the spacecraft may be fitted with sensors, allowing it to perform mapping and surveying missions throughout the solar system in search of important resources. By refueling as it goes, WINE is designed for near-indefinite exploration. The project is backed by NASA’s Small Business Innovation Research program.

Why Water?

What’s valuable on Earth isn’t necessarily valuable in space. Water is, of course, precious on our planet but it’s also inexpensive and widely accessible. Just turn on the tap.

Water will be key to future space colonies. But launching rockets is expensive, so getting payloads of potable water from Earth to outer space poses a significant challenge. (Hence why many astronauts aboard the International Space Station drink recycled urine.) For the sake of cost and self-sustainability, future space colonies will likely be established near water sources on planetary bodies.

UCF Steam-powered spacecraft WINE
Honeybee Robotics

Although gold and platinum may fetch more money on Earth, water is the low hanging fruit when it comes to asteroid mining.

“Water is the commodity that’s most worth pursuing on asteroids and other planetary bodies because it gives you fuel and something to sustain a human presence in space,” Zacny says.

Over the past three years, UCF planetary research scientist Phil Metzger and his students have developed and refined the technologies and calculations that make WINE work. Thanks to the decreasing price of small satellites and labor volunteered by students, the spacecraft was created on the cheap.

Ethics of student labor aside, Zacny says the combination of cheap parts and labor has made significant progress in aerospace possible.

“The price of building small satellites is getting less and less, so more universities can afford to buy this stuff,” he says. “And since universities use student labor to build them, they’re essentially free to develop. It’s essentially a win-win. University students get a practice run and experience in developing spacecraft and WINE is built cheaply.”

Massless Exploration

WINE isn’t the only spacecraft using water to get around. Researchers at Cornell University, Arizona State University, and others are developing similar spacecraft to explore our solar system affordably and efficiently.

” … The benefits of using propellant gathered from the environment are clear — instant propulsion from simply water and solar power.”

“If we are to become a spacefaring species, humanity needs to learn to live off the land,” says Mason Peck, an aerospace engineer at Cornell and former NASA Chief Technologist. “Specifically, [that means using] resources from space, rather than sending everything from Earth.”

Eliminating our reliance on resources from Earth has been a NASA priority for most of the past decade and using water to reach that goal has been promising. “It’s a relatively small molecule and using it as a propellant requires none of the complicated machinery of cryogenic propulsion, like the Space Shuttle, or heavy power systems, like spacecraft that use ion propulsion.”

W.I.N.E. The World Is Not Enough

Although creating steam has the advantage of being low-tech, it must be stored at a high temperature or highly pressured in order to be readily available. Both of these options require the spacecraft to carry more mass.

Instead, Peck has turned to electrolysis, which splits water into oxygen and hydrogen, and uses these components independently. The goal here is near massless exploration — carry as little as possible and gather necessary resources along the way.

UCF Steam-powered spacecraft WINE
Honeybee Robotics

“The result is higher efficiency, probably weighs less, and enables thrust-on-demand performance,” he says. “But maybe this distinction is nit-picking. Either way, steam or electrolysis, the benefits of using propellant gathered from the environment are clear — instant propulsion from simply water and solar power.” Peck and his team plan to launch a technology-demonstration mission on NASA’s SLS vehicle in 2020.

WINE may meet a similarly short deadline. The spacecraft could be assembled and launched within two years, according to Zacny, and may cost as little as few hundred thousand dollars — a small sum in aerospace terms. Zacny envisions a future in which hundreds of WINE spacecraft are launched simultaneously as a secondary payload, before traveling independently to different asteroids and planetary bodies, mapping the solar system as they go.

“As time progresses, we can potentially develop the atlas of the solar system,” he says. “We will know more than just the name of the asteroid, but also its mineralogical data, water concentration, and its specific features and size. It would be similar to using street view on Earth. You don’t have to drive to the cities, you can go into street view and see what a city looks like. So, in the same way, we try to expand the knowledge of a solar system by using these small, self-refueling spacecraft.”

Dyllan Furness
Former Digital Trends Contributor
Dyllan Furness is a freelance writer from Florida. He covers strange science and emerging tech for Digital Trends, focusing…
Juiced Bikes offers 20% off on all e-bikes amid signs of bankruptcy
Juiced Bikes Scrambler ebike

A “20% off sitewide” banner on top of a company’s website should normally be cause for glee among customers. Except if you’re a fan of that company’s products and its executives remain silent amid mounting signs that said company might be on the brink of bankruptcy.That’s what’s happening with Juiced Bikes, the San Diego-based maker of e-bikes.According to numerous customer reports, Juiced Bikes has completely stopped responding to customer inquiries for some time, while its website is out of stock on all products. There are also numerous testimonies of layoffs at the company.Even more worrying signs are also piling up: The company’s assets, including its existing inventory of products, is appearing as listed for sale on an auction website used by companies that go out of business.In addition, a court case has been filed in New York against parent company Juiced Inc. and Juiced Bike founder Tora Harris, according to Trellis, a state trial court legal research platform.Founded in 2009 by Harris, a U.S. high-jump Olympian, Juiced Bikes was one of the early pioneers of the direct-to-consumer e-bike brands in the U.S. market.The company’s e-bikes developed a loyal fandom through the years. Last year, Digital Trends named the Juiced Bikes Scorpion X2 as the best moped-style e-bike for 2023, citing its versatility, rich feature set, and performance.The company has so far stayed silent amid all the reports. But should its bankruptcy be confirmed, it could legitimately be attributed to the post-pandemic whiplash experienced by the e-bike industry over the past few years. The Covid-19 pandemic had led to a huge spike in demand for e-bikes just as supply chains became heavily constrained. This led to a ramp-up of e-bike production to match the high demand. But when consumer demand dropped after the pandemic, e-bike makers were left with large stock surpluses.The good news is that the downturn phase might soon be over just as the industry is experiencing a wave of mergers and acquisitions, according to a report by Houlihan Lokey.This may mean that even if Juiced Bikes is indeed going under, the brand and its products might find a buyer and show up again on streets and trails.

Read more
Volkswagen plans 8 new affordable EVs by 2027, report says
volkswagen affordable evs 2027 id 2all

Back in the early 1970s, when soaring oil prices stifled consumer demand for gas-powered vehicles, Volkswagen took a bet on a battery system that would power its first-ever electric concept vehicle, the Elektro Bus.
Now that the German automaker is facing a huge slump in sales in Europe and China, it’s again turning to affordable electric vehicles to save the day.Volkswagen brand chief Thomas Schaefer told German media that the company plans to bring eight new affordable EVs to market by 2027."We have to produce our vehicles profitably and put them on the road at affordable prices," he is quoted as saying.
One of the models will be the ID.2all hatchback, the development of which is currently being expedited to 36 months from its previous 50-month schedule. Last year, VW unveiled the ID.2all concept, promising to give it a price tag of under 25,000 euros ($27,000) for its planned release in 2025.VW CEO Larry Blume has also hinted at a sub-$22,000 EV to be released after 2025.It’s unclear which models would reach U.S. shores. Last year, VW America said it planned to release an under-$35,000 EV in the U.S. by 2027.The price of batteries is one of the main hurdles to reduced EV’s production costs and lower sale prices. VW is developing its own unified battery cell in several European plants, as well as one plant in Ontario, Canada.But in order for would-be U.S. buyers to obtain the Inflation Reduction Act's $7,500 tax credit on the purchase of an EV, the vehicle and its components, including the battery, must be produced at least in part domestically.VW already has a plant in Chattanooga, Tennesse, and is planning a new plant in South Carolina. But it’s unclear whether its new unified battery cells would be built or assembled there.

Read more
Nissan launches charging network, gives Ariya access to Tesla SuperChargers
nissan charging ariya superchargers at station

Nissan just launched a charging network that gives owners of its EVs access to 90,000 charging stations on the Electrify America, Shell Recharge, ChargePoint and EVgo networks, all via the MyNissan app.It doesn’t stop there: Later this year, Nissan Ariya vehicles will be getting a North American Charging Standard (NACS) adapter, also known as the Tesla plug. And in 2025, Nissan will be offering electric vehicles (EVs) with a NACS port, giving access to Tesla’s SuperCharger network in the U.S. and Canada.Starting in November, Nissan EV drivers can use their MyNissan app to find charging stations, see charger availability in real time, and pay for charging with a payment method set up in the app.The Nissan Leaf, however, won’t have access to the functionality since the EV’s charging connector is not compatible. Leaf owners can still find charging stations through the NissanConnectEV and Services app.Meanwhile, the Nissan Ariya, and most EVs sold in the U.S., have a Combined Charging System Combo 1 (CCS1) port, which allows access to the Tesla SuperCharger network via an adapter.Nissan is joining the ever-growing list of automakers to adopt NACS. With adapters, EVs made by General Motors, Ford, Rivian, Honda and Volvo can already access the SuperCharger network. Kia, Hyundai, Toyota, BMW, Volkswagen, and Jaguar have also signed agreements to allow access in 2025.
Nissan has not revealed whether the adapter for the Ariya will be free or come at a cost. Some companies, such as Ford, Rivian and Kia, have provided adapters for free.
With its new Nissan Energy Charge Network and access to NACS, Nissan is pretty much covering all the bases for its EV drivers in need of charging up. ChargePoint has the largest EV charging network in the U.S., with over 38,500 stations and 70,000 charging ports at the end of July. Tesla's charging network is the second largest, though not all of its charging stations are part of the SuperCharger network.

Read more