Skip to main content

Genetically engineered bacteria could be the key to mass-produced spider silk

spider silk nasa
pbombaert/Getty Images

As materials go, spider silk is pretty darn interesting. With its combination of tensile strength, toughness, and ductility, it’s one of nature’s most impressive inventions. It’s incredibly versatile, too. We might be used to spider silk being employed by, well, spiders to trap prey, line nests, or create alarm lines, but there are plenty of applications in the human-sized world, too. These include lightweight bulletproof shields, ultrathin medical sutures, high-strength safety belts, and plenty more.

Unfortunately, there’s a problem. Spider silk isn’t easy to farm and, while spiders produce impressive quantities of it relative to their size, that’s still a tiny amount in our terms. It’s not easy to set up spider farms to farm it in bulk either. That’s because some species of spider can turn cannibalistic when they’re kept in groups. As a result, many scientists and other researchers are left positing the amazing potential uses of spider silk, but with few practical ways of putting these into action. Other attempts to try and produce spider silk minus the spiders (using everything from yeast to goats) have been unable to match the spectacular qualities of the real thing. Where’s Spider-Man when you need him?

Recommended Videos

Fortunately, things may be changing. Researchers from Washington University in St. Louis have demonstrated a new way to create spider silk in the lab — in a way that could prove to be highly reproducible. Their work was presented this week at the American Chemical Society (ACS) Spring 2019 National Meeting & Exposition.

Christopher Bowen

“We created synthetic spider silk by optimizing a synthetic DNA sequence to encode a high molecular weight spider silk protein and engineering bacteria to facilitate its overproduction,” Fuzhong Zhang, lead researcher on the project, told Digital Trends.

It sounds (and is) fairly complex, but it could also be a game changer. The team essentially figured out how to genetically edit bacteria to create super-strong spider silk. This involved dividing spider silk genes into smaller pieces, which were then reassembled after being integrated into a bacterial genome. The resulting microbially produced spider silk matched the properties of natural spider silk in everything from its stronger-than-steel strength to its stretchability. So far, the researchers have been able to use the technique to obtain up to 2 grams of silk per liter of bacterial culture. They hope to increase this yield in the future.

“The next step is to make the bioproduction process more scalable and more economically competitive,” Zhang said.

Should all go according to plan, NASA is hoping that spider silk could turn out to be a useful material to have on missions.

Luke Dormehl
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
The best portable power stations
EcoFlow DELTA 2 on table at campsite for quick charging.

Affordable and efficient portable power is a necessity these days, keeping our electronic devices operational while on the go. But there are literally dozens of options to choose from, making it abundantly difficult to decide which mobile charging solution is best for you. We've sorted through countless portable power optionsĀ and came up with six of the best portable power stations to keep your smartphones, tablets, laptops, and other gadgets functioning while living off the grid.
The best overall: Jackery Explorer 1000

Jackery has been a mainstay in the portable power market for several years, and today, the company continues to set the standard. With three AC outlets, two USB-A, and two USB-C plugs, you'll have plenty of options for keeping your gadgets charged.

Read more
CES 2023: HD Hyundai’s Avikus is an A.I. for autonomous boat and marine navigation
Demonstration of NeuBoat level 2 autonomous navigation system at the Fort Lauderdale International Boat Show

This content was produced in partnership with HD Hyundai.
Autonomous vehicle navigation technology is certainly nothing new and has been in the works for the better part of a decade at this point. But one of the most common forms we see and hear about is the type used to control steering in road-based vehicles. That's not the only place where technology can make a huge difference. Autonomous driving systems can offer incredible benefits to boats and marine vehicles, too, which is precisely why HD Hyundai has unveiled its Avikus AI technology -- for marine and watercraft vehicles.

More recently, HD Hyundai participated in the Fort Lauderdale International Boat Show, to demo its NeuBoat level 2 autonomous navigation system for recreational boats. The name mashes together the words "neuron" and "boat" and is quite fitting since the Avikus' A.I. navigation tech is a core component of the solution, it will handle self-recognition, real-time decisions, and controls when on the water. Of course, there are a lot of things happening behind the scenes with HD Hyundai's autonomous navigation solution, which we'll dive into below -- HD Hyundai will also be introducing more about the tech at CES 2023.

Read more
This AI cloned my voice using just three minutes of audio
acapela group voice cloning ad

There's a scene in Mission Impossible 3 that you might recall. In it, our hero Ethan Hunt (Tom Cruise) tackles the movie's villain, holds him at gunpoint, and forces him to read a bizarre series of sentences aloud.

"The pleasure of Busby's company is what I most enjoy," he reluctantly reads. "He put a tack on Miss Yancy's chair, and she called him a horrible boy. At the end of the month, he was flinging two kittens across the width of the room ..."

Read more