Skip to main content

Low-Earth orbit is overcrowded. This Silicon Valley startup has a solution

LeoLabs Unveils Kiwi Space Radar

In late January, two satellites that had harmlessly orbited the Earth for decades almost collided with one another. Had they done so, at speeds of 14 kilometers per second, both would have been instantly obliterated.

Recommended Videos

This is what people who work in space industries call a “catastrophic collision.” The catastrophe, as it turns out, isn’t the expiration of the two satellites themselves. The catastrophic part refers to what would happen next. The two former satellites would have become celestial shotgun blasts, clouds of tiny debris. Initially, these would have followed their original orbits. Over the course of the next few months, however, both would have dispersed, creating a thin shell of debris around the Earth. Anyone passing through this shell at any point during the next few centuries, whether another satellite or a manned spaceship headed to the moon or Mars, would have faced an increased risk of collision with one of the tiny, potentially deadly, high-speed fragments.

LeoLabs Starlink
LeoLabs

Fortunately, this didn’t happen. The two satellites whizzed past one another with a clearance of just 40 feet between them, equivalent to less than half a regulation basketball court. On this occasion, we got lucky.

But the near-miss highlights something important. None of us has much of an awareness of events that are taking place some 560 miles above our heads. Despite (rightful) renewed concern about the impact humanity is having on our Earthbound environment, we don’t necessarily reserve the same fearfulness for what we’re doing to our environment even as close to home as Low Earth Orbit. It is, in some senses, a Wild West of unregulated activity. And not enough people are paying attention.

LeoLabs Starlink
LeoLabs

Fortunately, a Silicon Valley space mapping startup called LeoLabs is. They were the ones who sounded the alarm about the recent satellite close shave. And they’re hoping to revolutionize the way we track satellites and other objects in space. It can’t happen soon enough!

Space traffic control

Every day, some 15,000 people in the United States wake up and go to work as federal air traffic controllers, keenly focused on a slice of airspace to make sure that every aircraft in U.S. airspace remains properly separated from one another in the sky. At a major airport, there can be more than 50 controllers on duty at any one time. At an air traffic control center that number is in the hundreds.

LeoLabs Starlink Tracking
LeoLabs Starlink Tracking

How many people, by comparison, are keeping an eye on space traffic? Probably fewer than you would expect. “Before us, nobody was watching for derelict satellite collisions,” Dan Ceperley, CEO of LeoLabs told Digital Trends.

On the surface, space traffic management sounds like the kind of no-show job Tony Soprano might organize for a nephew, requiring little more than collecting a regular paycheck for minimal work. I mean, whoever heard of traffic in space? As it turns out, space traffic is a bigger problem than most of us might realize. Ceperley likes to show people an image when he talks about what it is that he does for a living. At first glance, it looks like a picture of a virus under a microscope, a dark sphere being swarmed over by tiny green dots. In fact, it’s a visualization depicting the past 24 hours of Low Earth Orbit, complete with all the objects that are currently circling our planet. “It’s impressive in kind of a scary way,” he said.

Right this moment, there are approximately 14,000 objects larger than 10 centimeters in Low Earth Orbit. Around 1,400 of these are functioning satellites. The others are a mix of derelict satellites, old rocket bodies, and assorted pieces of space detritus that no-one has been able or willing to remove. Ten centimeters, approximately four inches, might not sound particularly large. But at the speed they’re traveling, multiple times that of a bullet fired from a rifle, it’s easy enough to cause a catastrophic collision for anything it collides with.

Keeping up with demand

LeoLabs provides a 24/7 monitoring service for what’s going on in the skies. There are two core technologies at work. The first is a growing network (currently three, with another three planned for the next two years) of ground-based radars. Based in Alaska, Texas, and New Zealand, these space surveillance radars scour the skies, singling out any object which passes overhead in Low Earth Orbit. LeoLabs’ phased array radars are capable of quickly switching from looking at one satellite to another, as frequently as every millisecond should they so wish. In an increasingly crowded sky, that’s a necessity.

Before LeoLabs came along, the only people building comparable radars were giant defense agencies or space organizations. However, Ceperley points out that, as more and more satellites are launched into orbit, the supply of these radars simply fell behind demand.

LeoLabs
Image used with permission by copyright holder

“With the amount of new traffic that’s coming online, building one new radar a decade just doesn’t keep up with everything that’s going on in space,” he said. “We’re using a different model, racing ahead as fast as we can.”

The second core technology driving LeoLabs is its software. “We have a platform which analyzes that data and sends out information in the form of alerts,” he explained. “If you need to know about your satellite, we can tell you precisely where it is, where it’s going to be in the next week, and if it’s going to face any risky situations in that time.”

Mapping the skies

Ceperley met his two LeoLabs co-founders in their previous job at SRI International, the legendary San Francisco research lab which helped spawn the first computer mouse and the Siri voice assistant. Ceperley worked there for eight years, carrying out government-funded research on how it could do a better job tracking satellites. As part of his job, he regularly heard from private companies asking for help tracking their satellites.

It wasn’t until he met with fellow SRI engineers Mike Nicolls and John Buonocore that the idea for what became LeoLabs started to develop, however.

“It turns out that [they] were working down the hall,” Ceperley recalled. “They were studying Aurora Borealis, the Northern Lights. They had spent about 20 years designing and building radars to do that. One day they called me down the hall and said, ‘We hear you need satellite data. Let us show you what we’re gathering.’”

The pair handed Ceperley an image, which looked like a window, streaked with raindrops. He asked what it was. Nicolls and Buonocore told him that each of the slashes on the image was a satellite or piece of space debris crossing the field they wanted to observe. The satellites were ruining their observations to the point that they had spent the past two years building software to recognize and digitally erase them from their data. Ceperley was astounded.

“Your trash could be someone else’s treasure,” he told them.

Satellite-tracking-as-a-service

LeoLabs was officially formed in 2015. It was an instant success in the industry, having pulled in $17 million of investment to date. The company provides its services as a subscription model. People can pay to access its findings — and be warned when there is risk of a possible collision. (No, it’s not possible to make a satellite turn left or right to avoid collisions. But you can vary speed the way two cars might coordinate to go through an intersection.)

So far, LeoLabs has picked up clients in the defense, insurance, and regulatory fields. But its biggest new audience is private satellite owners. In recent years, this is the demographic that has exploded onto the scene, with an influx of everything from small-scale startups launching individual CubeSats to giants like SpaceX shooting veritable sky-blotting armies of satellites into orbit.

Along with its “satellite tracking as a service” business model, one of the ways LeoLabs is innovating is by finding ways to track ever-smaller objects in space. Its most recent new radar, the New Zealand-based Kiwi Space Radar, came online at the end of 2019. For the first time, it lets LeoLabs track orbiting objects as small as two centimeters in size. When you broaden the parameters by monitoring objects down to this size, the total number of orbiting objects increases from 14,000 to a massive 250,000. Even at two centimeters, these previously untracked objects are capable of shattering any satellite that they collide with.

“Once we’re tracking [that kind of] small stuff, we might see 20 near-misses per week,” Ceperley said.

There’s still work to be done. Rolling out its radar network will increase LeoLabs’ forecasting abilities. But the company also hopes to raise awareness about the issue of space traffic. Like the astronomers starting to sound the alarm about the massive numbers of satellites being launched into space, LeoLabs wants to educate the public — and lawmakers — about a field that is still in its infancy when it comes to rules and regulations.

“At the moment there really isn’t a good definition of what safety in space means,” Ceperley said. “I think a big reason for that is that there hasn’t been that much data about what is the risk situation in space. That’s fundamentally what we’ve set out to solve. With our background in radars and software, we knew we could create a large data set and data feed showing the situation in space. That can then be used to help define what is safe — and highlight what’s not.”

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Mars Express orbiter has relayed data from seven different Mars missions
An artist's impression of Mars Express. The spacecraft left Earth for Mars on 2 June 2003. It reached its destination after a six-month journey, and has been investigating the planet since early 2004.

When a rover is exploring the surface of Mars, it doesn't send data straight back to Earth. That's for two reasons: Firstly, it would require a large, powerful antenna which would be cumbersome and expensive to add, and secondly, because of the rotations of Earth and Mars any location on the surface would be pointing in the wrong direction some of the time.

So, to get data back from Mars surface missions, we use a network of Mars orbiters, which collect data from rovers and landers and relay it back to Earth. Known as the Mars Relay Network, these orbiting spacecraft take on relay duties in addition to their scientific roles observing the red planet. Recently, one of these orbiters, the European Space Agency (ESA)'s Mars Express set a new record for relaying data from seven different Mars surface missions.

Read more
Lucy spacecraft snaps stunning image of Earth during flyby
NASA’s Lucy spacecraft captured this image (which has been cropped) of the Earth on Oct 15, 2022, as a part of an instrument calibration sequence at a distance of 380,000 miles (620,000 km). The upper left of the image includes a view of Hadar, Ethiopia, home to the 3.2 million-year-old human ancestor fossil for which the spacecraft was named.

Earlier this month, NASA's Lucy spacecraft whipped by Earth as it performed a flyby on its way to the Trojan asteroids in the orbit of Jupiter. While it was passing by, it snapped images of both the Earth and the moon as seen from space. NASA recently shared these images with the public.

Lucy is visiting the asteroids in the orbit of Jupiter to learn about the formation of the solar system, but it's a long journey to reach there. The spacecraft was launched in October 2021, and it is taking a complex path around the solar system to reach the asteroids over the course of 12 years. As part of this journey, Lucy swung back around Earth to get a gravity boost to help carry it on its way.

Read more
How to watch rocket startup Firefly Aerospace’s second attempt to reach orbit
Firefly's Alpha rocket at the start of its mission.

Rocket startup Firefly Aerospace will attempt to reach orbit for the first time in a launch tonight, Sunday, September 11. This will be the second attempt at launching its Alpha rocket, after a previous attempt around this time last year came to a dramatic end. Firefly will be hoping for a better outcome this time around, and if you'd like to watch the launch attempt then we've got the details on the livestream of the launch below.
What to expect from the launch
The launch is to take place from Firefly's launch site (SLC-2) at Vandenberg Space Force Base. The aim of the mission, named Alpha Flight 2, is to deliver satellites into low-Earth orbit. These include payloads that are re-creations of the payloads which were lost in the first launch attempt in September last year.

The payloads included in the mission include a three-unit CubeSat called Serenity from the group Teachers in Space, which carries a suite of sensors and a camera pointed at Earth and is designed for educational purposes. The NASA TechEdSat-15 is another three-unit CubeSat which is a test of an exo-brake device designed to use the drag of Earth's atmosphere to slow and direct satellites. And the PicoBus is a deployer that will deliver eight tiny satellites, called picosatellites, to test an open source approach to telecommunications constellations.

Read more