Skip to main content

Incredible treatment allows paralyzed mice to walk again

A new treatment is giving hope that paralysis from spinal cord damage could one day be reversible. Researchers from Germany’s Ruhr-University Bochum were able to get paralyzed mice to walk again after stimulating their brains to produce a particular protein, which was then spread to other areas of the nervous system.

Spinal cord damage is extremely difficult to treat because it can sever the nerves running from the brain to other parts of the body like the limbs, which leaves people paralyzed. The fibers in the spinal cord can’t repair themselves, so damage to them is typically permanent.

Recommended Videos

To address this challenge, the researchers used a treatment involving the protein hyper-interleukin-6 (hiL-6), which makes these nerve cells regenerate and grow back. The protein doesn’t occur in nature — it has to be genetically engineered — but once available, it can be used to stimulate nerve cells to regrow and repair.

The research team showed for the first time that this protein can reverse paralysis in mice. To make the hiL-6, they stimulated the mice’s brains to produce the protein, which was then spread to other brain areas and nerve cells. By stimulating the production of the protein in one brain area, it could start nerve cells in the spinal cord regenerating.

“Ultimately, this enabled the previously paralyzed animals that received this treatment to start walking after two to three weeks,” said lead researcher Dietmar Fischer in a statement. “This came as a great surprise to us at the beginning, as it had never been shown to be possible before after full paraplegia.”

Two to three weeks after treatment, the previously paralyzed mice began to walk.
Two to three weeks after treatment, the previously paralyzed mice began to walk. Lehrstuhl für Zellphysiologie

The next step is for the team to research whether this method can be used alongside other existing treatments to produce hiL-6 more effectively. And they also want to know whether the treatment can be used if a spinal cord injury occurred only recently, in the last few weeks. “This aspect would be particularly relevant for application in humans,” said Fischer. “We are now breaking new scientific ground. These further experiments will show, among other things, whether it will be possible to transfer these new approaches to humans in the future.”

The research is published in the journal Nature Communications.

Georgina Torbet
Former Digital Trends Contributor
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
iPhone 17 series could finally end Apple’s stingy era of slow screens
iPhone on charging stand showing photo screen in iOS 17 StandBy mode.

Apple has played a relatively slow innovation game when it comes to display upgrades on its phones. The company took its own sweet time embracing OLED screens, then did the same with getting rid of the ugly notch, and still has a lot of ground to cover at adopting high refresh rate panels.

The status could finally change next year. According to Korea-based ET News, which cites an industry source, Apple will fit an LTPO (low-temperature polycrystalline oxide) screen across the entire iPhone 17 series, including the rumored slim version and the entry-point model.

Read more
Aptera’s 3-wheel solar EV hits milestone on way toward 2025 commercialization
Aptera 2e

EV drivers may relish that charging networks are climbing over each other to provide needed juice alongside roads and highways.

But they may relish even more not having to make many recharging stops along the way as their EV soaks up the bountiful energy coming straight from the sun.

Read more
Ford ships new NACS adapters to EV customers
Ford EVs at a Tesla Supercharger station.

Thanks to a Tesla-provided adapter, owners of Ford electric vehicles were among the first non-Tesla drivers to get access to the SuperCharger network in the U.S.

Yet, amid slowing supply from Tesla, Ford is now turning to Lectron, an EV accessories supplier, to provide these North American Charging Standard (NACS) adapters, according to InsideEVs.

Read more