Skip to main content

Hubble captures an aging galaxy that is slowly fading away

This unusual lenticular galaxy, which is between a spiral and elliptical shape, has lost almost all the gas and dust from its signature spiral arms, which used to orbit around its center. Known as NGC 1947, this galaxy was discovered almost 200 years ago by James Dunlop, a Scottish-born astronomer who later studied the sky from Australia. NGC 1947 can only be seen from the southern hemisphere, in the constellation Dorado (the Dolphinfish).
This unusual lenticular galaxy, which is between a spiral and elliptical shape, has lost almost all the gas and dust from its signature spiral arms, which used to orbit around its center. Known as NGC 1947, this galaxy was discovered almost 200 years ago by James Dunlop, a Scottish-born astronomer who later studied the sky from Australia. NGC 1947 can only be seen from the southern hemisphere, in the constellation Dorado (the Dolphinfish). ESA/Hubble & NASA, D. Rosario; Acknowledgment: L. Shatz

The Hubble Space Telescope has captured this beautiful image of a lenticular galaxy called NGC 1947. A lenticular galaxy is one that is neither a spiral galaxy, like our Milky Way, nor an elliptical galaxy, but somewhere in between the two. It has a large disk in the middle but unlike other spiral galaxies, it does not have spiral arms reaching out from its center.

This galaxy wasn’t always this way, however. At a point in its past, it did have spiral arms. You can see the evidence of these arms in the swirls of dust which still surround it, as the European Space Agency writes: “the faint remnants of the galaxy’s spiral arms can still be made out in the stretched thin threads of dark gas encircling it.”

Recommended Videos

Another difference between lenticular galaxies like NGC 1947 and other kinds of galaxy is the rate of star formation. Galaxies like the Milky Way continue to form new stars, especially in their spiral arms, as clouds of dust and gas clump together and are eventually bound by gravitational forces. In lenticular galaxies, however, there is very little star formation. These galaxies have used up most of their interstellar matter so there is not enough material for the formation of many new stars.

This means that the average age of stars in NGC 1947 is getting older, and the galaxy is fading over time. To see the galaxy for yourself, you’d need to be located in the southern hemisphere as it is further south than the celestial equator.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble observes weird star system with three off-kilter, planet-forming disks
This illustration is based on Hubble Space Telescope images of gas and dust discs encircling the young star TW Hydrae. We have an oblique view of three concentric rings of dust and gas. At the centre is the bright white glow of the central star. The reddish-coloured rings are inclined to each other and are therefore casting dark shadows across the outermost ring.

Planets form from large disks of dust and gas that collect around their host stars. Billions of years ago, our solar system would have looked like a single point of bright light coming from the sun, with a disk of matter swirling around it that eventually clumped into planets. To learn about how our solar system formed, it's helpful to look at other systems that are currently going through this process -- such as TW Hydrae, a system located 200 light-years away and turned face-on toward us, making it the perfect place to observe planetary formation.

But there's something odd about the TW Hydrae system. In 2017, astronomers first noticed a strange shadow that was visible on the disk of dust and gas surrounding the star. While such shadows are typically from a planet formed within the disk, in this case the shadow's shape and movement suggested it was actually from a second disk, located within the first disk and tilted at a different angle. Now, astronomers think they have spotted evidence of a third disk, with all three stacked up and creating a complex pattern of shadows.

Read more
Hubble celebrates its 33rd birthday with stunning nebula image
Astronomers are celebrating the NASA/ESA Hubble Space Telescope’s 33rd launch anniversary with an ethereal photo of a nearby star-forming region, NGC 1333. The nebula is in the Perseus molecular cloud, and is located approximately 960 light-years away.

It will soon be the 33rd anniversary of the launch of the Hubble Space Telescope, and to celebrate this milestone, Hubble scientists have shared a stunning image taken by the telescope of a picturesque nebula. NGC 1333 is a busy stellar nursery, with new stars forming among the cloud of dust and gas located 960 light-years away.

The beautiful image of the nebula shows swirls of dark dust around glowing points of light where new stars are being born. To capture this scene, Hubble used its instruments across their full wavelengths, from ultraviolet through the optical light range and into the near-infrared. Hubble took the image using its Wide Field Camera 3 instrument, which used several filter across different wavelengths that were then assigned to colors (Blue: F475W, Green: F606W, Red: F657N and F814W) to create the colorful final result.

Read more
James Webb captures a stunning image of two galaxies merging
Shining like a brilliant beacon amidst a sea of galaxies, Arp 220 lights up the night sky in this view from NASA’s James Webb Space Telescope. Actually two spiral galaxies in the process of merging, Arp 220 glows brightest in infrared light, making it an ideal target for Webb. It is an ultra-luminous infrared galaxy (ULIRG) with a luminosity of more than a trillion suns. In comparison, our Milky Way galaxy has a much more modest luminosity of about ten billion suns.

The James Webb Space Telescope has captured a gorgeous image of a dramatic cosmic event: two galaxies colliding. The two spiral galaxies are in the process of merging, and are glowing brightly in the infrared wavelength in which James Webb operates, shining with the light of more than a trillion suns.

It is not uncommon for two (or more) galaxies to collide and merge, but the two pictured in this image are giving off particularly bright infrared light. The pair has a combined name, Arp 220, as they appear as a single object when viewed from Earth. Known as an ultraluminous infrared galaxy (ULIRG), Arp 220 glows far more brightly than a typical spiral galaxy like our Milky Way.

Read more