Skip to main content

This incredible image shows the magnetic field of a black hole

A view of the M87 supermassive black hole in polarised light
The Event Horizon Telescope (EHT) collaboration, which produced the first-ever image of a black hole released in 2019, has today a new view of the massive object at the center of the Messier 87 (M87) galaxy: how it looks in polarized light. This is the first time astronomers have been able to measure polarization, a signature of magnetic fields, this close to the edge of a black hole.  This image shows the polarized view of the black hole in M87. The lines mark the orientation of polarization, which is related to the magnetic field around the shadow of the black hole. EHT Collaboration

The Event Horizon Telescope (EHT) project, the international collaboration which famously captured the first-ever image of a black hole, has released another new and unique image showing the same black hole’s magnetic field.

The collaboration involves using telescopes and arrays from around the globe to observe the same target — in this case, the supermassive black hole at the center of the galaxy M87. Following on from the first image of this black hole released in 2019, this new image shows the way that light around the black hole is polarized.

Recommended Videos

“This work is a major milestone: the polarization of light carries information that allows us to better understand the physics behind the image we saw in April 2019, which was not possible before,” explained Iván Martí-Vidal, Coordinator of the EHT Polarimetry Working Group, in a statement. “Unveiling this new polarized-light image required years of work due to the complex techniques involved in obtaining and analyzing the data.”

This is the first time polarization of a black hole has been measured so close to its edge. By tracking the polarization of the light, researchers can see the lines of the magnetic field at the edge of the black hole.

This helps them to understand how black holes absorb dust and gas from the disks surrounding them and how they send out dramatic jets of energy that reach as far as 5,000 light-years from their center.

“The newly published polarized images are key to understanding how the magnetic field allows the black hole to ‘eat’ matter and launch powerful jets,” said EHT collaboration member Andrew Chael, a NASA Hubble Fellow at the Princeton Center for Theoretical Science and the Princeton Gravity Initiative in the US.

The EHT collaboration will continue working to observe more details about this black hole and its magnetic field in particular.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb spots the most distant active supermassive black hole ever discovered
Crop of Webb's CEERS Survey image.

As well as observing specific objects like distant galaxies and planets here in our solar system, the James Webb Space Telescope is also being used to perform wide-scale surveys of parts of the sky. These surveys observe large chunks of the sky to identify important targets like very distant, very early galaxies, as well as observe intriguing objects like black holes. And one such survey has recently identified the most distant active supermassive black hole seen so far.

While a typical black hole might have a mass up to around 10 times that of the sun, supermassive black holes are much more massive, with a mass that can be millions or even billions of times the mass of the sun. These monsters are found at the heart of galaxies and are thought to play important roles in the formation and merging of galaxies.

Read more
SpaceCamp, the amazing 1986 film, is stuck in a streaming black hole
The cast of SpaceCamp pose for a photo.

From left, Kate Capshaw, Joaquin Phoenix, Lea Thompson, Tate Donovan, Larry B. Scott, and Kelly Preston in 1986's "SpaceCamp."

The mid-1980s was a special time for movies. The Star Wars trilogy had wrapped up. We had two films with Indiana Jones. Ghostbusters was huge. Back to the Future. Revenge of the Nerds.

Read more
The universe has a cosmic ‘hum’ caused by merging black holes
This artist’s concept shows stars, black holes, and nebula laid over a grid representing the fabric of space-time.

In the last decade, astronomers made a major discovery, confirming the existence of gravitational waves. These long-theorized ripples in spacetime are created when extremely massive bodies such as two black holes collide, creating shocks that spread out across the universe and can be detected from millions of light-years away.

Now, a 15-year study has provided more evidence of these gravitational waves, including those at very low frequencies. A large international team in the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) collaboration used three ground-based telescopes, the Arecibo Observatory in Puerto Rico, the Green Bank Telescope in West Virginia, and the Very Large Array in New Mexico, to observe pulsars. These rotating neutron stars give off regular pulses of energy, and these pulses can be affected by gravitational waves. By looking for small deviations in the pulses, the researchers were able to see how spacetime was being rippled.

Read more