Skip to main content

Hunting for alien life by examining molecular complexity

Chemical space.
Chemical space. Naomi Johnson, Lee Cronin

When it comes to searching for life beyond our planet, one of the most common approaches is to look for what are called biosignatures: Indications of chemicals that are produced by lifeforms, such as the recent possible detection of phosphine on Venus. But this requires making a lot of assumptions about what life looks like and how it operates — not to mention the practical challenges of trying to detect every chemical which could be relevant. Now, a team from Arizona State University has come up with a new approach to biosignatures, which can look for life more broadly and which could fit into a space probe.

The idea is to look not for specific chemicals, but rather to look for complex molecules which would be unlikely to form in large amounts by chance. They developed an algorithm to assign a complexity score to molecules based on how many bonds they have, called the molecular assembly (MA) number. This number could be measured using equipment that fits into a space probe, and if you find a bunch of complex molecules in a given area, that’s a big clue you should look more closely there.

“The method enables identifying life without the need for any prior knowledge of its biochemistry,” said study co-author Sara Imari Walker, of ASU’s School of Earth and Space Exploration. “It can therefore be used to search for alien life in future NASA missions, and it is informing an entirely new experimental and theoretical approach to finally reveal the nature of what life is in the universe, and how it can emerge from lifeless chemicals.”

The clever part is that this method avoids making assumptions about what life looks like. Living things seem to reliably produce more complex molecules than non-living things, so we can follow the trail of complexity to search for life.

Not only that, but understanding more about how chemical systems process information could lead to breakthroughs in other fields as well.

“We think this will enable an entirely new approach to understanding the origin of living systems on Earth, other worlds, and hopefully to identifying de novo living systems in lab experiments,” said ASU alumnus Cole Mathis, postdoctoral researcher at the University of Glasgow and co-author. “From a really practical perspective, if we can understand how living systems are able to self-organize and produce complex molecules, we can use those insights to design and manufacture new drugs and new materials.”

The research is published in the journal Nature Communications.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hunting for evidence of the first stars that ever existed
This artist’s impression shows a field of Population III stars as they would have appeared a mere 100 million years after the Big Bang. Astronomers may have discovered the first signs of their ancient chemical remains in the clouds surrounding one of the most distant quasars ever detected.

As the universe has aged, the type of stars found within it has changed. Heavy elements like iron are created by the reactions which happen inside stars, and when those stars eventually run out of fuel and explode as supernovae, those heavier elements are spread around and incorporated into the next generation of stars. So over time, stars gradually gained higher levels of these heavier elements, which astronomers refer to as their metallicity.

That means that if you could look back at the very earliest stars, born when the universe was young, they would be quite different from stars today. These early stars are known as Population III stars, formed when the universe was less than 100 million years old, and searching for them has been one of the holy grails of astronomy research.

Read more
SpaceX eyes mission to extend life of NASA’s Hubble Space Telescope
The Hubble Space Telescope floats above Earth.

SpaceX is working with NASA to explore the possibility of using its Dragon spacecraft to push the Hubble Space Telescope to a higher orbit, thereby extending the life of the mission.

Hubble has been operating for the last 32 years in an orbit around 335 miles above Earth, capturing stunning imagery and gathering data to help scientists learn more about the universe and its origins. But its orbit is slowly decaying, leaving NASA with the choice of finding a way to raise Hubble to a more stable orbit in a move that would extend the mission by years, or eventually losing it as it falls back to Earth.

Read more
Perseverance rover finds conditions where life could have thrived on Mars
NASA’s Perseverance rover puts its robotic arm to work around a rocky outcrop called “Skinner Ridge” in Mars’ Jezero Crater. Composed of multiple images, this mosaic shows layered sedimentary rocks in the face of a cliff in the delta, as well as one of the locations where the rover abraded a circular patch to analyze a rock’s composition.

The Perseverance rover has made an exciting discovery on Mars, identifying the building blocks of life in a sample from an area of the Jezero crater where there was once plentiful liquid water. The organic molecules it discovered can be formed in various ways including non-organic processes, so they aren't proof that life once existed there -- but they do show that life could potentially have thrived there millions of years ago.

NASA’s Perseverance rover puts its robotic arm to work around a rocky outcrop called “Skinner Ridge” in Mars’ Jezero Crater. Composed of multiple images, this mosaic shows layered sedimentary rocks in the face of a cliff in the delta, as well as one of the locations where the rover abraded a circular patch to analyze a rock’s composition. NASA/JPL-Caltech/ASU/MSSS

Read more