Skip to main content

Hubble revisits an irregular dwarf galaxy bursting with young stars

This week’s image from the Hubble Space Telescope shows the quirky dwarf galaxy NGC 1705, an unusually shaped small galaxy located 17 million light-years away. Stars have formed in this galaxy across its entire lifetime, but the galaxy went through a very intensive period of star formation, called a starburst, approximately 30 million years ago. Many of the stars born during this period are now located around the central core or within the huge central star cluster.

This particular dwarf galaxy is an irregular shape, but it is still a useful object of study. Dwarf galaxies are thought to be some of the oldest galaxies, so studying them can help us learn about the early universe. This one was observed in order to learn about young stars.

Dwarf galaxy NGC 1705 in this image from the NASA/ESA Hubble Space Telescope.
The dwarf galaxy NGC 1705 featured in this image from the NASA/ESA Hubble Space Telescope lies in the southern constellation Pictor, approximately 17 million light-years from Earth. NGC 1705 is a cosmic oddball – it is small, irregularly shaped, and has recently undergone a spate of star formation known as a starburst. ESA/Hubble & NASA, R. Chandar

“The data shown in this image come from a series of observations designed to unveil the interplay between stars, star clusters, and ionized gas in nearby star-forming galaxies,” Hubble scientists write. “By observing a specific wavelength of light known as H-alpha with Hubble’s Wide Field Camera 3, astronomers aimed to discover thousands of emission nebulae – regions created when hot, young stars bathe the clouds of gas surrounding them in ultraviolet light, causing them to glow.”

This isn’t the first time that Hubble has imaged the galaxy NGC 1705. You can also see an image of the same galaxy below, as captured by Hubble in two observations in 1999 and 2000.

Dwarf galaxy NGC 1705, captured by Hubble in 1999 and 2000.
Dwarf galaxy NGC 1705, captured by Hubble in 1999 and 2000. NASA , ESA , and The Hubble Heritage Team (STScI /AURA ); Acknowledgment: M. Tosi (INAF, Osservatorio Astronomico di Bologna)

The striking difference in the quality and detail of the two images shows how much technology has developed in the last 20 years. The older image was taken using Hubble’s Wide Field and Planetary Camera 2, the predecessor to the Wide Field Camera 3 which took the newer image. The Wide Field Camera 3 was installed in 2009, during the final Space Shuttle mission to Hubble.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble goes hunting for elusive medium-sized black holes
A Hubble Space Telescope image of the globular star cluster, Messier 4. The cluster is a dense collection of several hundred thousand stars. Astronomers suspect that an intermediate-mass black hole, weighing as much as 800 times the mass of our Sun, is lurking, unseen, at its core.

There's something odd about the black holes discovered to date. We've found plenty of smaller black holes, with masses less than 100 times that of the sun, and plenty of huge black holes, with masses millions or even billions of times that of the sun. But we've found hardly any black holes in the intermediate mass range, arguably not enough to confirm that they even exist, and it's not really clear why.

Now, astronomers are using the Hubble Space Telescope to hunt for these missing black holes. Hubble has previously found some evidence of black holes in this intermediate range, and now it is being used to search for examples within a few thousand light-years of Earth.

Read more
Hubble observes weird star system with three off-kilter, planet-forming disks
This illustration is based on Hubble Space Telescope images of gas and dust discs encircling the young star TW Hydrae. We have an oblique view of three concentric rings of dust and gas. At the centre is the bright white glow of the central star. The reddish-coloured rings are inclined to each other and are therefore casting dark shadows across the outermost ring.

Planets form from large disks of dust and gas that collect around their host stars. Billions of years ago, our solar system would have looked like a single point of bright light coming from the sun, with a disk of matter swirling around it that eventually clumped into planets. To learn about how our solar system formed, it's helpful to look at other systems that are currently going through this process -- such as TW Hydrae, a system located 200 light-years away and turned face-on toward us, making it the perfect place to observe planetary formation.

But there's something odd about the TW Hydrae system. In 2017, astronomers first noticed a strange shadow that was visible on the disk of dust and gas surrounding the star. While such shadows are typically from a planet formed within the disk, in this case the shadow's shape and movement suggested it was actually from a second disk, located within the first disk and tilted at a different angle. Now, astronomers think they have spotted evidence of a third disk, with all three stacked up and creating a complex pattern of shadows.

Read more
Hubble celebrates its 33rd birthday with stunning nebula image
Astronomers are celebrating the NASA/ESA Hubble Space Telescope’s 33rd launch anniversary with an ethereal photo of a nearby star-forming region, NGC 1333. The nebula is in the Perseus molecular cloud, and is located approximately 960 light-years away.

It will soon be the 33rd anniversary of the launch of the Hubble Space Telescope, and to celebrate this milestone, Hubble scientists have shared a stunning image taken by the telescope of a picturesque nebula. NGC 1333 is a busy stellar nursery, with new stars forming among the cloud of dust and gas located 960 light-years away.

The beautiful image of the nebula shows swirls of dark dust around glowing points of light where new stars are being born. To capture this scene, Hubble used its instruments across their full wavelengths, from ultraviolet through the optical light range and into the near-infrared. Hubble took the image using its Wide Field Camera 3 instrument, which used several filter across different wavelengths that were then assigned to colors (Blue: F475W, Green: F606W, Red: F657N and F814W) to create the colorful final result.

Read more