Skip to main content

James Webb Space Telescope team delivers best possible news

Work to align the James Webb Space Telescope’s enormous mirror has gone so well that the mission team believes its optical performance will be able to “meet or exceed the science goals the observatory was built to achieve.”

NASA’s Webb Reaches Alignment Milestone, Optics Working Successfully

This is the best possible news for the most powerful space telescope ever built as it prepares to peer into deep space in a quest to discover more about the origins of the universe while also searching for distant planets that may support life.

Recommended Videos

The James Webb Space Telescope launched toward the end of December 2021 in a mission expected to last at least 10 years.

This week the Webb team reported the successful completion of a mirror alignment process known as “fine phasing,” which checks that the telescope’s optics are performing at, or above, expectations.

No critical issues were discovered, nor was any measurable contamination or blockages to Webb’s optical path, the team said, adding that its tests showed the observatory is able to successfully gather light from distant objects and deliver it to its instruments.

The excellent news pave the way for the telescope’s exploration of the universe, which is expected to get underway in about three months’ time from its orbit around one million miles from Earth.

NASA this week posted a Webb telescope selfie (below), with all 18 segments on the 21-foot-wide mirror shining brightly as they collect light from a single star during alignment procedures.

Looking sharp, Webb!

A special lens inside the NIRCam instrument took a "selfie" of Webb's mirror segments, verifying their alignment with NIRCam. The segments are bright as they are all collecting light from the same star in unison. https://t.co/RPL4OItJNA #UnfoldTheUniverse pic.twitter.com/jSrupf7i4a

— NASA Webb Telescope (@NASAWebb) March 16, 2022

“More than 20 years ago, the Webb team set out to build the most powerful telescope that anyone has ever put in space and came up with an audacious optical design to meet demanding science goals,” said Thomas Zurbuchen, associate administrator for NASA’s Science Mission Directorate. “Today we can say that design is going to deliver.”

The ambitious $10 billion project is a joint effort involving NASA, the European Space Agency, and the Canadian Space Agency, with the new telescope set to complement the work of the hugely successful Hubble telescope that’s been exploring deep space for decades, sending back stunning images along the way.

Trevor Mogg
Contributing Editor
Not so many moons ago, Trevor moved from one tea-loving island nation that drives on the left (Britain) to another (Japan)…
One galaxy, two views: see a comparison of images from Hubble and Webb
The peculiar galaxy NGC 3256 takes centre stage in this image from the NASA/ESA Hubble Space Telescope. This distorted galaxy is the wreckage of a head-on collision between two spiral galaxies which likely occurred 500 million years ago, and it is studded with clumps of young stars which were formed as gas and dust from the two galaxies collided.

It might not seem obvious why astronomers need multiple different powerful space telescopes. Surely a more powerful telescope is better than a less powerful one? So why are there multiple different telescopes in orbit, either around Earth or around the sun?

The answer is to do with two main factors. One is the telescope's field of view, meaning how much of the sky it looks at. Some telescopes are useful for looking at large areas of the sky in less detail, working as survey telescopes to identify objects for further research or to look at the universe on a large scale -- like the recently launched Euclid mission. While others, like the Hubble Space Telescope, look at small areas of the sky in great detail, which is useful for studying particular objects.

Read more
James Webb spots the most distant active supermassive black hole ever discovered
Crop of Webb's CEERS Survey image.

As well as observing specific objects like distant galaxies and planets here in our solar system, the James Webb Space Telescope is also being used to perform wide-scale surveys of parts of the sky. These surveys observe large chunks of the sky to identify important targets like very distant, very early galaxies, as well as observe intriguing objects like black holes. And one such survey has recently identified the most distant active supermassive black hole seen so far.

While a typical black hole might have a mass up to around 10 times that of the sun, supermassive black holes are much more massive, with a mass that can be millions or even billions of times the mass of the sun. These monsters are found at the heart of galaxies and are thought to play important roles in the formation and merging of galaxies.

Read more
Saturn as you’ve never seen it before, captured by Webb telescope
Saturn captured by the James Webb Space Telescope

NASA has shared a gorgeous image of Saturn captured recently by the James Webb Space Telescope (JWST).

Webb’s first near-infrared observations of the second largest planet in our solar system also show several of Saturn’s moons: Dione, Enceladus, and Tethys.

Read more