Skip to main content

James Webb spots huge plumes of water from Saturn’s moon Enceladus

One of the prime places that scientists are interested in looking for life in our solar system is Saturn’s icy moon Enceladus. The moon has an ocean of liquid water beneath a thick, icy crust that could potentially support life. Interest in this subsurface ocean was heightened when the Cassini mission was studying Enceladus in the 2000s and flew through plumes of water spraying from the surface,

Now, the James Webb Space Telescope has been used to observe these plumes all the way from Earth, helping scientists to learn about the water system on this moon. The plumes come from Enceladus’s south pole, and Webb was able to spot them even though the entire moon is just over 300 miles across. Despite that small size, the plume Webb observed spanned more than 6,000 miles.

Saturn’s geologically active moon, Enceladus. NASA/JPL

“When I was looking at the data, at first, I was thinking I had to be wrong. It was just so shocking to detect a water plume more than 20 times the size of the moon,” said lead author of the research, Geronimo Villanueva of NASA’s Goddard Space Flight Center, in a statement. “The water plume extends far beyond its release region at the southern pole.”

Recommended Videos

As well as being long, the plume was also throwing up water at a fast rate, with vapor gushing away from the surface at a rate of  nearly 80 gallons per second — which, NASA points out, could fill an Olympic-sized swimming pool in a couple of hours.

This amount of water is affecting the environment around Saturn, as the moon is leaving a trail of water as it orbits. “The orbit of Enceladus around Saturn is relatively quick, just 33 hours. As it whips around Saturn, the moon and its jets are basically spitting off water, leaving a halo, almost like a donut, in its wake,” said Villanueva. “In the Webb observations, not only was the plume huge, but there was just water absolutely everywhere.”

NASA’s James Webb Space Telescope’s exquisite sensitivity and highly specialised instruments are revealing details into how one of Saturn’s moon’s feeds the water supply for the entire system of the ringed planet. Enceladus, a prime candidate in the search for life elsewhere in our Solar System, is a small moon about four percent the size of Earth. New images from Webb’s NIRCam (Near-Infrared Camera) have revealed a water vapour plume jetting from the south pole of Enceladus, extending out 40 times the size of the moon itself. The Integral Field Unit (IFU) aboard the NIRSpec (Near-Infrared Spectrograph) instrument also provided insights into how the water from Enceladus feeds the rest of its surrounding environment.
NASA’s James Webb Space Telescope’s exquisite sensitivity and highly specialized instruments are revealing details into how one of Saturn’s moon’s feeds the water supply for the entire system of the ringed planet. NASA, ESA, CSA, STScI, L. Hustak (STScI), G. Villanueva (NASA’s Goddard Space Flight Center)

The researchers used Webb’s NIRCam (Near-Infrared Camera) instrument to take pictures of the plume, and also its NIRSpec (Near-Infrared Spectrograph) instrument to identify the water coming from and surrounding the moon.

“Right now, Webb provides a unique way to directly measure how water evolves and changes over time across Enceladus’ immense plume, and as we see here, we will even make new discoveries and learn more about the composition of the underlying ocean,” said co-author Stefanie Milam of NASA Goddard. “Because of Webb’s wavelength coverage and sensitivity, and what we’ve learned from previous missions, we have an entire new window of opportunity in front of us.”

The research is available as a pre-print and will soon be published in the journal Nature Astronomy.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb takes rare direct image of a nearby super-Jupiter
Artist’s impression of a cold gas giant orbiting a red dwarf. Only a point of light is visible on the JWST/MIRI images. Nevertheless, the initial analysis suggests the presence of a gaseous planet that may have properties similar to Jupiter.

Even with huge ground-based observatories and the latest technology in space-based telescopes, it's still relatively rare for astronomers to take an image of an exoplanet. Planets outside our solar system are so far away and so small and dim compared to the stars they orbit that it's extremely difficult to study them directly. That's why most observations of exoplanets are made by studying their host stars. Now, though, the James Webb Space Telescope has directly imaged a gas giant -- and it's one of the coldest exoplanets observed so far.

The planet, named Epsilon Indi Ab, is located 12 light-years away and has an estimated temperature of just 35 degrees Fahrenheit (2 degrees Celsius). The fact it is so cool compared to most exoplanets meant that Webb's sensitive instruments were needed to study it.

Read more
One half of this wild exoplanet reaches temperatures of 1,450 degrees Fahrenheit
webb wasp 39b dayside nightside stsci 01j2f12rm1s3n39yj938nhsf93 png

This artist’s concept shows what the exoplanet WASP-39 b could look like based on indirect transit observations from JWST and other space- and ground-based telescopes. Data collected by its NIRSpec (Near-Infrared Spectrograph) show variations between the morning and evening atmosphere of the planet. NASA, ESA, CSA, Ralf Crawford (STScI)

One of the ground-breaking abilities of the James Webb Space Telescope is that researchers can use it to not only detect distant planets but also to peer into their atmosphere. Now, new research using Webb has uncovered differing conditions between morning and evening on a distant exoplanet, the first time such differences have been observed on a planet outside our solar system.

Read more
Webb captures a Penguin and an Egg for its two-year anniversary
This “penguin party” is loud! The distorted spiral galaxy at center, the Penguin, and the compact elliptical galaxy at left, the Egg, are locked in an active embrace. A new near- and mid-infrared image from the James Webb Space Telescope, taken to mark its second year of science, shows that their interaction is marked by a faint upside-down U-shaped blue glow.

This “penguin party” is loud! The distorted spiral galaxy at center, called the Penguin, and the compact elliptical galaxy at left, called the Egg, are locked in an active embrace. A new near- and mid-infrared image from the James Webb Space Telescope, taken to mark its second year of science, shows that their interaction is marked by a faint upside-down U-shaped blue glow. NASA, ESA, CSA, STScI

Today, July 12, marks two years since the first images from the James Webb Space Telescope were unveiled. In that time, Webb has discovered the most distant galaxies known, uncovered surprises about the early universe, peered into the atmospheres of distant planets, and produced a plethora of beautiful images of space.

Read more