Skip to main content

One galaxy, two views: see a comparison of images from Hubble and Webb

It might not seem obvious why astronomers need multiple different powerful space telescopes. Surely a more powerful telescope is better than a less powerful one? So why are there multiple different telescopes in orbit, either around Earth or around the sun?

The answer is to do with two main factors. One is the telescope’s field of view, meaning how much of the sky it looks at. Some telescopes are useful for looking at large areas of the sky in less detail, working as survey telescopes to identify objects for further research or to look at the universe on a large scale — like the recently launched Euclid mission. While others, like the Hubble Space Telescope, look at small areas of the sky in great detail, which is useful for studying particular objects.

The other important factor for space telescopes is the wavelength which they operate in. Both Hubble and the James Webb Space Telescope are used to study objects like galaxies, but they do so in different wavelengths. Hubble operates primarily in the visible light wavelength, the same as human eyes, while Webb operates in the infrared. That means that they can see different aspects of the same objects.

To demonstrate how that works in practice, a new comparison shows the same target, galaxy NCG 3256, as seen by both Webb and Hubble.

The peculiar galaxy NGC 3256 dominates this image from the NASA/ESA/CSA James Webb Space Telescope. This Milky Way-sized galaxy lies about 120 million light-years away in the constellation Vela, and is a denizen of the Hydra-Centaurus Supercluster.
The peculiar galaxy NGC 3256 dominates this image from the NASA/ESA/CSA James Webb Space Telescope. This Milky Way-sized galaxy lies about 120 million light-years away in the constellation Vela, and is a denizen of the Hydra-Centaurus Supercluster. ESA/Webb, NASA & CSA, L. Armus, A. Evans

This Webb image shows the tendrils of dust and gas which form the arms of this galaxy. As new young stars are born from the dust and gas, they give off radiation that hits the dust grains around them, making that dust glow in the infrared. The young stars also shine brightly in the infrared wavelength, with the brightest regions indicating hotbeds of star formation.

The peculiar galaxy NGC 3256 takes centre stage in this image from the NASA/ESA Hubble Space Telescope. This distorted galaxy is the wreckage of a head-on collision between two spiral galaxies which likely occurred 500 million years ago, and it is studded with clumps of young stars which were formed as gas and dust from the two galaxies collided.
The peculiar galaxy NGC 3256 takes center stage in this image from the NASA/ESA Hubble Space Telescope. This distorted galaxy is the wreckage of a head-on collision between two spiral galaxies which likely occurred 500 million years ago, and it is studded with clumps of young stars which were formed as gas and dust from the two galaxies collided. ESA/Hubble, NASA

The Hubble image shows the same galaxy but seen in a different wavelength, and was originally taken in 2018. While Webb’s infrared view allows it to look through clouds of dust, in the visible light range that Hubble operates in the dust creates dark threads which block out the light. The galaxy is much brighter in the infrared than in the visible light wavelength, but in this range, you can more clearly see that the galaxy actually has two centers, or nuclei, which is the result of two galaxies merging together.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
See the stunning image James Webb took to celebrate its first birthday
The first anniversary image from the NASA/ESA/CSA James Webb Space Telescope displays star birth like it’s never been seen before, full of detailed, impressionistic texture. The subject is the Rho Ophiuchi cloud complex, the closest star-forming region to Earth. It is a relatively small, quiet stellar nursery, but you’d never know it from Webb’s chaotic close-up. Jets bursting from young stars crisscross the image, impacting the surrounding interstellar gas and lighting up molecular hydrogen, shown in red. Some stars display the telltale shadow of a circumstellar disc, the makings of future planetary systems.

Today marks the one-year anniversary of the first images shared from the James Webb Space Telescope, and to celebrate this milestone NASA has shared yet another gorgeous image of space captured by Webb.

The new image shows a star system called Rho Ophiuchi; a busy region where new stars are being born amide swirls of dust and gas. Located just 390 light-years away, Webb was able to capture the region in stunning detail using its NIRCam instrument.

Read more
Zoom into stunning James Webb image to see a galaxy formed 13.4 billion years ago
A section of a James Webb image showing a small part of the Extended Groth Strip, located between the Ursa Major and Boötes constellations.

One of the amazing things about the James Webb Space Telescope is the level of detail it is able to capture of very distant objects -- but it can be hard to picture what that means when the distances being considered are so large. Now, a new visualization gives a feel of just how detailed the data from the telescope is, by showing how it's possible to start with a stunning view of thousands of galaxies and zoom closer and closer in until you reach just one.

CEERS: Flight to Maisie's Galaxy

Read more
James Webb spots the most distant active supermassive black hole ever discovered
Crop of Webb's CEERS Survey image.

As well as observing specific objects like distant galaxies and planets here in our solar system, the James Webb Space Telescope is also being used to perform wide-scale surveys of parts of the sky. These surveys observe large chunks of the sky to identify important targets like very distant, very early galaxies, as well as observe intriguing objects like black holes. And one such survey has recently identified the most distant active supermassive black hole seen so far.

While a typical black hole might have a mass up to around 10 times that of the sun, supermassive black holes are much more massive, with a mass that can be millions or even billions of times the mass of the sun. These monsters are found at the heart of galaxies and are thought to play important roles in the formation and merging of galaxies.

Read more