Skip to main content

New James Webb data shows that the crisis in cosmology persists

Something very strange is up with cosmology. In the last few decades, one big question has created a crisis in the field: How fast is the universe expanding? We know that the universe has been expanding since the Big Bang, but the exact rate of this expansion is still not known for certain. The problem is that the rate of expansion seems to be different depending on what factors are used to measure it, and no one is sure why.

Recently, new research using the James Webb Space Telescope has made it clear that this problem isn’t going away any time soon. Webb has refined previous measurements of the expansion rate made using data from the Hubble Space Telescope, and the glaring inconsistency is still there.

Recommended Videos

The rate of the expansion of the universe is known as the Hubble constant, and there are two main ways in which it is measured. The first way is by looking at distant galaxies, and working out how far away they are by looking at particular types of stars that have predictable levels of brightness. This tells you how long the light has been traveling from that galaxy. Then researchers look at the redshift of that galaxy, which shows how much expansion has occurred during this time. This is the method of measuring the Hubble constant used by space telescopes like Hubble and Webb.

The other method is to look at the leftover radiation from the Big Bang, called the cosmic microwave background. By looking at this energy and how it varies across the universe, researchers can model the conditions that must have created it. That lets you see how the universe must have expanded over time.

The problem is, these two methods disagree on the final figure for the Hubble constant. And as measurement techniques get more and more accurate, the difference isn’t going away.

Combined observations from NASA’s NIRCam (Near-Infrared Camera) and Hubble’s WFC3 (Wide Field Camera 3) show spiral galaxy NGC 5584, which resides 72 million light-years away from Earth. Among NGC 5584’s glowing stars are pulsating stars called Cepheid variables and Type Ia supernova, a special class of exploding stars. Astronomers use Cepheid variables and Type Ia supernovae as reliable distance markers to measure the universe’s expansion rate.
Combined observations from NASA’s NIRCam (Near-Infrared Camera) and Hubble’s WFC3 (Wide Field Camera 3) show spiral galaxy NGC 5584, which resides 72 million light-years away from Earth. Among NGC 5584’s glowing stars are pulsating stars called Cepheid variables and Type Ia supernova, a special class of exploding stars. Astronomers use Cepheid variables and Type Ia supernovae as reliable distance markers to measure the universe’s expansion rate. Image: NASA, ESA, CSA, Adam G. Riess (JHU, STScI); Image Processing: Alyssa Pagan (STScI)

The recent research used Webb to investigate the particular stars used for calculating distance, called Cepheid variables. Researchers looked at the galaxy NGC 5584 to see if the measurements Hubble took of these stars really were accurate — if they aren’t, that could explain the discrepancy in the estimates of the Hubble constant.

The researchers took previous Hubble measurements of the stars and pointed Webb at the same stars, to see if there were important differences in the data. Hubble was designed to look primarily in the visible light wavelength, but the stars had to be observed in the near-infrared because of the dust in the way, so the thought was that perhaps Hubble’s infrared vision was just not crisp enough to see the stars accurately.

However, that explanation wasn’t to be. Webb, which operates in the infrared, looked at more than 300 Cepheid variables, and the researchers found that the Hubble measurements were correct. They could even pinpoint the light from these stars even more accurately.

So to our best knowledge, the discrepancy in the Hubble constant is still there, and still causing a problem. There are all sorts of theories for why this could be, from theories about dark matter to flaws in our theories of gravity. For now, the question remains firmly open.

The research has been accepted for publication in The Astrophysical Journal.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb Telescope captures gorgeous galaxy with a hungry monster at its heart
Featured in this new image from the NASA/ESA/CSA James Webb Space Telescope is Messier 106, also known as NGC 4258. This is a nearby spiral galaxy that resides roughly 23 million light-years away in the constellation Canes Venatici, practically a neighbour by cosmic standards. Messier 106 is one of the brightest and nearest spiral galaxies to our own and two supernovae have been observed in this galaxy in 1981 and 2014.

A new image from the James Webb Space Telescope shows off a nearby galaxy called Messier 106 -- a spiral galaxy that is particularly bright. At just 23 million light-years away (that's relatively close by galactic standards), this galaxy is of particular interest to astronomers due to its bustling central region, called an active galactic nucleus.

The high level of activity in this central region is thought to be due to the monster that lurks at the galaxy's heart. Like most galaxies including our own, Messier 106 has an enormous black hole called a supermassive black hole at its center. However, the supermassive black hole in Messier 106 is particularly active, gobbling up material like dust and gas from the surrounding area. In fact, this black hole eats so much matter that as it spins, it warps the disk of gas around it, which creates streamers of gas flying out from this central region.

Read more
Gaia data shows hundreds of tiny moons orbiting around asteroids
gaia asteroid binaries mapping the stars of milky way pillars 1

There are plenty of moons orbiting around the planets in our solar system -- Saturn, for example, has well over 100 known moons -- and astronomers believe that planets outside our solar system almost certainly have moons too, called exomoons. Those are particularly hard to spot, but now researchers have a new bevy of a different type of moon to explore: those that orbit around asteroids.

It seems funny to think of it, but it's actually quite common for asteroids to have tiny moons of their own. These form what is called a binary asteroid, like the famous pair of Didymos and Dimorphos, which NASA crashed a spacecraft into in 2022. The new data about binary asteroids comes from the European Space Agency's Gaia mission, a space-based telescope that has spotted new potential moons around 350 asteroids.

Read more
James Webb takes rare direct image of a nearby super-Jupiter
Artist’s impression of a cold gas giant orbiting a red dwarf. Only a point of light is visible on the JWST/MIRI images. Nevertheless, the initial analysis suggests the presence of a gaseous planet that may have properties similar to Jupiter.

Even with huge ground-based observatories and the latest technology in space-based telescopes, it's still relatively rare for astronomers to take an image of an exoplanet. Planets outside our solar system are so far away and so small and dim compared to the stars they orbit that it's extremely difficult to study them directly. That's why most observations of exoplanets are made by studying their host stars. Now, though, the James Webb Space Telescope has directly imaged a gas giant -- and it's one of the coldest exoplanets observed so far.

The planet, named Epsilon Indi Ab, is located 12 light-years away and has an estimated temperature of just 35 degrees Fahrenheit (2 degrees Celsius). The fact it is so cool compared to most exoplanets meant that Webb's sensitive instruments were needed to study it.

Read more