Skip to main content

This tiny patch could be the future of wearable technology

Sweat analysis smart patch.
NTU SINGAPORE

Over the past couple of years, the wearable segment — think smartwatches and fitness bands — seems to have grown stagnant in bringing newer biosensing capabilities on board. Yes, engineering in its miniaturized form isn’t easy, but at the same time, we have seen some startling advancements targeted at wearables.

The latest one comes courtesy of experts at the ​​Nanyang Technological University in Singapore. The team has developed a plaster that looks like a Band-Aid, capable of analyzing sweat and finding biomarkers. In the field of microfluidics, sweat is being seen as a goldmine of health-sensing data and as the next great avenue for wearable technology.

Recommended Videos

In a research paper published in the journal Analytical Chemistry, the team describes a hydrogel-based film with separate chemical receptacles to identify lactate, urea, and glucose levels in sweat. The method is completely non-invasive, which means all the data is analyzed from the sweat appearing on the skin after any form of workout.

Schematic of smart band-aid for sweat analysis.
NTU SINGAPORE

The bandage incorporates a tiny laser, which is the heart of the sensor. This assembly is wrapped in tiny droplets of liquid crystal, which helps control how the laser works. These laser-filled droplets were then put on a soft, jelly-like material called hydrogel, which is what makes the patch flexible and comfortable to wear.

The team claims it’s the first wearable sensor of its kind that can detect and measure various chemicals in sweat with incredible accuracy. What makes it special is that it can pick up on a wide range of these chemicals, from very tiny amounts to much larger concentrations.

When applied to the skin, it uses light from the laser to detect and measure specific chemicals or substances in the body. In this case, the biomarkers are urea, glucose, and lactate. The best part is that this patch can deliver analysis results in just a few minutes, saving users from the hassle of visiting a clinic or having to deal with bulky machines.

This smart 'band-aid' could help monitor your health without pricking your fingers

And here is the best part. You only need to shine a light on the bandage, and a smartphone will perform the analysis. The team relied upon an app to read the light fluctuation data and interpret it. “In real-live experiments, the plaster successfully picked up tiny fluctuations of glucose, lactate, and urea levels in sweat down to 0.001 millimeter (mm), which is 100 times better than current similar technology,” the team says.

“Our innovation represents a non-invasive, quick, and effective way for diabetic patients to monitor their health. By combining a microlaser with a soft hydrogel film, we have demonstrated the feasibility of a wearable laser to provide a more pleasant health monitoring experience for patients,” explains Professor Chen Yu-Cheng from the institution’s School of Electrical and Electronic Engineering (EEE).

Of the biomarkers mentioned above, glucose is currently a hot target for giants like Apple and Samsung. However, neither company has perfected its smartwatch-based glucose analysis tech so far, and it could be a while before we see it on the market. The race is tight, and deservedly so.

NTU team behind sweat analysis team.
NTU SINGAPORE

At the moment, analyzing blood glucose at home requires pricking the skin and getting a droplet out for chemical analysis. It’s invasive, and not everyone is comfortable with it. That also explains why multiple teams are researching ways to analyze blood glucose levels using LEDs, the kind we see on the biosensors of smartwatches.

The flexible skin developed by the team at NTU is a step in the right direction. It’s a low-cost and disposable solution, and according to the research paper, “the range of detectable biomolecules can be expanded, such as drugs secreted in sweat, pathological chemicals, and others.”

In the context of smartwatches achieving similar capabilities, well, this one is more like a temporary solution. I asked the team behind the biosensing patch, and they told me that it can’t be integrated within a smartwatch or fitness band form factor. That primarily has to do with the sensing model involved.

Workings of a smart band aid.
NTU SINGAPORE

“Since the developed sensor is not currently reusable, it is not suitable to be attached on a smartwatch, particularly as the technology relies on chemicals. Wearables are mostly suitable for physical signals like heartbeat, pressure, etc., as these do not require liquid for measurements,” the NTU experts told Digital Trends.

But regardless of whether we can integrate this patch with a smartwatch, there is massive potential here. Why not see it as a product of its own class? Multiple brands, like Ultrahuman, already offer sensor-equipped skin patches to monitor health while connected to a phone.

Then there is the versatility aspect. The smart patch developed by the NTU team can already detect two extra classes of biomolecules: lactate and urea. Moreover, by changing the cholesteric liquid crystal (CLC) droplets in the hydrogel film, the patch can detect even more biomolecules.

Two Samsung Galaxy Watch 7 smartwatches laying next to each other on a table.
Joe Maring / Digital Trends

Take, for example, urea. There’s a strong correlation between urea levels in sweat with diabetes-related issues, and it is also indicative of renal problems. Interestingly, a paper published in the journal Physiological Measurement details an approach for measuring urea level in sweat using a light sensor, somewhat like smartwatches.

Next, we have lactate levels. Analyzing lactate levels could be a godsend for athletes, as this chemical in sweat is used to measure the intensity of workouts and sports performance. Interestingly, as this paper in Scientific Reports details, non-invasive continuous analysis of sweat lactate levels is possible using a custom biosensor.

Epidermal and electrode-based noninvasive patches have also been developed. Plenty of research confirms that we are at the cusp of yet another leap in wearable biosensing.

All we need is a brand willing to experiment with a new product category or build upon the research that falls in their engineering domain for smartwatches and bands. And, of course, be ethical while at it, unlike the hell unleashed by the ugly Apple-Masimo lawsuit over patented wearable tech that led to a ban on Apple Watches.

Nadeem Sarwar
Nadeem is a tech journalist who started reading about cool smartphone tech out of curiosity and soon started writing…
Everything you need to know about the OnePlus 13
Official OnePlus 13 product renders showing rear panel colors.

OnePlus is an excellent brand that offers powerful flagship phones at a great value compared to some of its competitors. We followed every rumor about the OnePlus 13 for months, but now it's here — and it's everything we hoped for. It might not be available in the Western market yet, but it will be soon.

So, what makes the OnePlus 13 so special? Here's everything you need to know about OnePlus' latest flagship.
When is the OnePlus 13 being released?

Read more
Qualcomm Snapdragon 8 Elite vs. MediaTek Dimensity 9400: the race is on
Comparison of Qualcomm Snapdragon 8 Elite and MediaTek Dimensity 9400 processors.

The flagship mobile silicon race has entered its next phase, one that will dictate the trajectory of Android hardware heading into 2025. Merely weeks after MediaTek wowed us with the Dimensity 9400 system on a chip (SoC), Qualcomm also pulled a surprise with the reveal of the Snapdragon 8 Elite.

But this time around, the battle is not as straightforward. Where MediaTek is working closely with Arm and adopting its latest CPU and graphics innovations, Qualcomm has firmly put its faith in custom cores. These are no ordinary cores, but a next-gen iteration of the same fundamental tech stack that powers Windows on ARM laptops.

Read more
Discolored line on your new Kindle? You aren’t alone
Amazon Kindle Colorsoft Signature Edition on a table.

The new Kindle Colorsoft Signature Edition is the first full-color e-reader, and a lot of bookworms couldn't wait to get their hands on it. Sadly, many people are reporting the display has a discolored yellow area at the bottom of the screen. The problem is so widespread that the Kindle Colorsoft dropped to an average review rating of 2.6 out of 5, although it does remain the bestselling e-book reader at the moment.

The cause of the discoloration isn't clear. Some users report that it only happens when using the edge lighting feature on the Kindle, while others say it appeared after a software update. Either way, the yellowing is a problem, especially on a device that Amazon has marketed as being great for comics and graphic novel fans. It's hard to enjoy the colorwork in a comic when it's distorted.

Read more