Skip to main content

The next generation of bandages will detect infections, release medicine, and more

Smart Bandage Detects Invisible Wounds
When tech and medicine meet, everyone benefits. The tech doesn’t have to be a new MRI or laser printed organs, either — even the lowly bandage can benefit from an upgrade. Different researchers worldwide are using their particular expertise to develop a host of newer, smarter, more effective bandages; many of which are steadily making their way out of the lab and into the real world. Here’s a quick overview of all the awesome bandage tech that you can expect to see in the not-so-distant future:

A Bandage of a Different Color

In 2010, a German team from the Fraunhofer Research Institutions for Microsystems and Solid State Technology EMFT created a bandage that looks like any other self-adhesive band-aid, but changes color to indicate infection by reacting to the pH of the skin beneath. Healthy healing wounds have a pH of about five or six. If this gets too alkaline, that can mean there’s an infection brewing underneath. The bandage will turn purple between 6.5 and 8.5 pH.

Recommended Videos

Another team from South Korea, Germany, and the US represented by Dr. Conor Evans from the Wellman Center for Photomedicine took a different tack: Liquid bandages funded in part by the Department of Defense. These can also clearly indicate wound healing, but not by detecting pH. The liquid bandage is designed to map oxygen concentrations in skin, including burns. In case you didn’t know, blood supply rich with oxygen and glucose is integral to wound healing. A deficit can result in poor recovery and chronic sores.

Current wound assessment is limited to the sniff test, visual inspection, or electrochemical analysis, which requires sticking electrodes (like needles) into the wound. The latter sounds like a miserable process for patients. A less invasive measurement option is available if you have the equipment to trace radioactive markers, but positron emission tomographs are pricey and not widely available.

smart bandage berkeley bioelectronics

The team’s new liquid bandage can deliver this information quickly and simply by changing color. Two oxygen-sensitive dyes; red porphyrin (similar to hemoglobin) and a green dye, are incorporated into a nitrocellulose liquid. The liquid glows green where the tissue underneath is properly oxygenated, and show red where there’s an oxygen deficit. A thin film on top of the bandage keeps atmospheric oxygen from confusing the readings, and the porphyrin from contacting the skin. The porphyrin is unique and the last component awaiting FDA approval; its brightness makes it possible to view the color changes with the naked eye. While porphyrins are generally expensive, this application only uses nanograms.

This new liquid is already being tested on animals, and the team is hoping to move forward to clinical trials soon. Dr. Conor Evans from the Wellman Center for Photomedicine called it a “platform technology that can be incorporated into existing bandages, or bioelectronic systems.”

Bio-Electronic Bandaids

A team of researchers from Tufts, Perdue, Harvard, and Women’s Hospital, supported by the National Science Foundation is, working on a new kind of bioelectronic smart bandage. The team introduced a bandage that uses sensors, biomaterials, and microsystems tech to monitor and treat wounds that require longer-term care, such as diabetic ulcers and burns.

Dubbed “flexible bioelectronics,” it’s still an emerging technology. The idea is to incorporate circuits into flexible, safe polymeric substrates. Intended for biomedical and life science applications, they will be able to track the healing process by checking oxygen levels and temperature. Health professionals would receive readings of this info, even – and especially – when they’re not with the patient.

tattoo medical

They’re hard at work applying new materials like a hydrogel to improve the flexibility factor. For drug delivery; polymeric microparticles will be embedded in the hydrogel patch of the bandage during the manufacturing process. A stimulation mechanism goes on top of the patch. Flexible sensors monitor temp and pH, and if the wound changes for the worse, the researchers send a pulse to the stimulator to release the drugs in the microparticles.

A group of doctors from Melbourne and Monash Universities lead by Nico Voelcker is working on a flexible bandage that uses nanotechnology for monitoring and alerts. In theory, it will change color like the liquid bandages, and use sensors and Bluetooth to send data to a smartphone. The idea is to be able to detect the signs of infection sooner, and without removing the bandage and thereby compromising the healing process. The concept has been prototyped, but needs more funding to move on to clinical trials.

Preemptive care in bandaging

One team out of UC Berkeley, also supported by the NSF, is working on a bandage that detects tissue damage before it even becomes visible. Intended for pressure ulcers, otherwise known as bedsores, the bandage monitors the electrical changes caused by cell death. It is essentially a printed array of tiny electrodes on a thin flexible film. Bedsores can be anything but minor: Christopher Reeve died of an infection that started with a bedsore. When internal cells (not at the surface of the skin) start to die, the cell walls break down and the bandage reads the electrical signals that escape the degraded walls.

patch1

The sore-prevention bandage has already been tested on rats. Investigator of the study and Professor of surgery at USCF Dr. Michael Harrison said, “By the time you see signs of a bedsore on the surface of the skin it’s usually too late… If you can detect bedsores early on, the solution is easy. Just take the pressure off.”

Further indications for such bandages include using electrical fields to control the healing process. The theory is that since cells, epithelial cells in particular, are repsonsive to electical fields, manipulating such fields can change the way wounds heal. This is all in the future at this point, however if researchers can figure out how to trigger galvanotaxis — the process of cells migrating to the injury —  it might be possible to adjust how a wound heals, minimizing scar tissue, for example, rather than just making it heal faster.

The two NSF and the DoD project conclude in 2016, but we shouldn’t expect to see the next generation of bandages on our shelves for at least another five years. Some of the technologies listed here involve disciplines that don’t always coordinate. After speaking to some of the doctors involed with the technology in this article, we can hope that Digital Trends has served some small purpose by encouraging chemists and bio-electronics specialists to come together.

Aliya Barnwell
Former Digital Trends Contributor
Aliya Tyus-Barnwell is a writer, cyclist and gamer with an interest in technology. Also a fantasy fan, she's had fiction…
The best portable power stations
EcoFlow DELTA 2 on table at campsite for quick charging.

Affordable and efficient portable power is a necessity these days, keeping our electronic devices operational while on the go. But there are literally dozens of options to choose from, making it abundantly difficult to decide which mobile charging solution is best for you. We've sorted through countless portable power options and came up with six of the best portable power stations to keep your smartphones, tablets, laptops, and other gadgets functioning while living off the grid.
The best overall: Jackery Explorer 1000

Jackery has been a mainstay in the portable power market for several years, and today, the company continues to set the standard. With three AC outlets, two USB-A, and two USB-C plugs, you'll have plenty of options for keeping your gadgets charged.

Read more
CES 2023: HD Hyundai’s Avikus is an A.I. for autonomous boat and marine navigation
Demonstration of NeuBoat level 2 autonomous navigation system at the Fort Lauderdale International Boat Show

This content was produced in partnership with HD Hyundai.
Autonomous vehicle navigation technology is certainly nothing new and has been in the works for the better part of a decade at this point. But one of the most common forms we see and hear about is the type used to control steering in road-based vehicles. That's not the only place where technology can make a huge difference. Autonomous driving systems can offer incredible benefits to boats and marine vehicles, too, which is precisely why HD Hyundai has unveiled its Avikus AI technology -- for marine and watercraft vehicles.

More recently, HD Hyundai participated in the Fort Lauderdale International Boat Show, to demo its NeuBoat level 2 autonomous navigation system for recreational boats. The name mashes together the words "neuron" and "boat" and is quite fitting since the Avikus' A.I. navigation tech is a core component of the solution, it will handle self-recognition, real-time decisions, and controls when on the water. Of course, there are a lot of things happening behind the scenes with HD Hyundai's autonomous navigation solution, which we'll dive into below -- HD Hyundai will also be introducing more about the tech at CES 2023.

Read more
This AI cloned my voice using just three minutes of audio
acapela group voice cloning ad

There's a scene in Mission Impossible 3 that you might recall. In it, our hero Ethan Hunt (Tom Cruise) tackles the movie's villain, holds him at gunpoint, and forces him to read a bizarre series of sentences aloud.

"The pleasure of Busby's company is what I most enjoy," he reluctantly reads. "He put a tack on Miss Yancy's chair, and she called him a horrible boy. At the end of the month, he was flinging two kittens across the width of the room ..."

Read more