Skip to main content

Can EVs be clean on a dirty electric grid?

American Wind Energy Association/Facebook

While the world moves towards electrifying as many cars as possible, it’s only a part of solving the climate equation. Those electric vehicles still need to get charged, and if that power is generated by the likes of coal and, to a lesser extent, methane, it undercuts the cuts in emissions we’re aiming for.

Some EV critics claim that a dirty electrical grid completely negates any good an electric vehicle can do. But is that true? Let’s take a closer look at how a dirty grid affects the emissions of an electric vehicle.

EVs have a marginally higher up-front carbon cost compared to combustion engines, but those emissions are made up for over the lifetime of the vehicle’s use. By using electricity rather than gas, vehicles produce significantly fewer emissions, even when taking into account the cost of production and recycling.

A chart comparing emissions of various vehicle types.
ICCT

The last report from the International Council on Clean Transportation (ICCT) paints a picture where EVs powered on the existing and projected American electrical grid are still more than twice as emission-friendly gas and biofuel cars. EVs powered by the existing grid mix are also more efficient than hybrids. We can improve these emissions further by running everything on renewable energy, but even without that grid transition, switching to EVs represents progress.

The ICCT’s is just one of many lifecycle assessment studies that generally agree that EVs running on a dirty grid are still cleaner than combustion vehicles. One 2018 study compared Canadian jurisdictions, and Alberta, which produces 67% of its power by coal, enables EV drivers with 50% better lifetime emissions versus gas vehicles.

China has had a bit of a head start with EVs, but its electrical grid is primarily coal-powered. Even there, electric vehicles emit 29% less than internal combustion cars.

ChargePoint Home EV charger plugged into car.
ChargePoint

One challenge with these calculations is factoring in what kind of power is used during vehicle production. One study in India found that its largely coal-based power grid contributed to higher emissions both during vehicle operation as well as production. These factors are estimated to make combustion cars the more eco-friendly option in that market for the time being. India has long-term plans to embrace renewable power, and EV lifecycle assessments like these hammer home the necessity of that transition.

A lack of EV battery recycling capacity still needs to be solved for, too. Without it, materials are improperly processed, increasing human and environmental exposure to a wide range of harmful metals.

Of the recyclers that exist, many do try to use renewable energy in their operations. Redwood Materials, a recycler founded by ex-Tesla CTO JB Straubel, actually uses residual power within batteries to support their recycling process.

Recycling methods vary vastly in their energy usage. Pyrometallurgy has been the traditional means of getting metals out of scrap, but it yields less than other methods and uses a fair bit of power to heat everything up. Electrometallurgy produces more material at the end of processing but uses even more power. Hydrometallurgy is much more energy efficient than both other methods, and recovers more materials, but is more expensive to run.

That said, lifecycle assessments attribute relatively few emissions to EV recycling compared to production and operation, especially since recovered materials can prevent emissions caused by the mining of virgin materials.

The environmental friendliness of electric vehicles isn’t measured in a vacuum. The grid plays a big role in determining the final footprint of an EV, but even when one is running on some of the world’s dirtiest power, it can still come ahead of gasoline cars.

Editors' Recommendations

Simon Sage
Simon has been publishing in tech since before the first iPhone was released. When he's not busy lighting a candle for the…
Jeep is launching its first two electric SUVs in the U.S. in 2024
Rendering of the Jeep Recon electric SUV.

Jeep will launch four electric SUVs for North America and Europe by the end of 2025, with at least two coming to the U.S., the automaker confirmed Thursday. While Jeep has some plug-in hybrids in its lineup, these will be the brand's first all-electric models.

The first of these models to launch will be the Jeep Recon, which is scheduled to start production in 2024, with reservations opening in early 2023. While it won't be fully revealed until next year, Jeep confirmed the Recon will have a "one-touch power top, removable doors, and glass," similar to the current Jeep Wrangler. While it doesn't replace the Wrangler, it's definitely inspired by the iconic off-roader, Jim Morrison, head of the Jeep brand in North America, said during a presentation of the electrification plan.

Read more
Tesla’s electric Semi truck coming sooner than expected
tesla electric semi truck debut delivery rec

Tesla boss Elon Musk has said the 500-mile-range version of the company’s all-electric Semi truck will start shipping before the end of this year.

The launch date is earlier than expected after the CEO said in January that the company wouldn’t be introducing any new vehicles this year, suggesting that the truck would land some time in 2023.

Read more
What’s the environmental impact of EV battery manufacturing and recycling?
EV battery

One major caveat to the spread of electric vehicles is the question of what we're going to do with all of these car batteries once their time is up. There's also concern about the environmental impact of lithium mining, not to mention that of other essential metals, like cobalt and nickel. Let's take some time to look at what goes into EV batteries, where they go when they're dead, and whether EVs are in the end still the best choice for the environment.
Are EV batteries recyclable?
EV batteries are highly recyclable. Over 95% of a lithium-ion battery's components can be extracted via hydrometallurgy. This involves grinding up battery components and running them through an acidic solution. A series of solvents and rounds of electroplating are able to pull individual elements out of the solution. Smelting recovery is common but more energy-intensive and less effective. The pollution caused by this recycling process is negligible. The problem right now is that we don't have enough recycling facilities currently running at the scale needed to meet the deluge of EV batteries coming off their end of life. We're currently only recycling about 5% of our lithium-ion batteries, but luckily the growing value of lithium, cobalt, and nickel makes the prospect of recovering it much more attractive.

Making the recycling process profitable can be challenging, depending on the materials you're targeting, but this study runs down the economics pretty well.
"Most process routes achieve high yields for the valuable metals cobalt, copper, and nickel. In comparison, lithium is only recovered in few processes and with a lower yield, albeit a high economic value. The recovery of the low value components graphite, manganese, and electrolyte solvents is technically feasible but economically challenging."
What's the environmental impact of lithium mining?

Read more