Skip to main content

Intel 12th-gen Alder Lake CPUs: Everything you need to know

After talking up Alder Lake for more than a year, Intel has released all of the CPUs in its 12th-generation range. This new generation brings the same slew of performance improvements worthy of our roundup of the best processors but also marks the first time Intel has used its 10nm manufacturing process on desktop and the first slot-in CPUs with a hybrid architecture.

There’s a lot to talk about with Alder Lake. We rounded up everything you need to know about 12th-gen Alder Lake processors, including how much they cost, what kind of performance you can expect, and how they work with new Z690 motherboards.

Recommended Videos

Pricing and availability

Intel Core i9-12900K box on a desk.
Image used with permission by copyright holder

The first batch of Alder Lake chips arrived on November 4. The company announced them during the Intel Innovation event on October 27, revealing six new CPUs to kick off the range. The Core i9-12900K was the original flagship model, but in April 2022, the Core i9-12900KS was launched and became the new flagship. Many models also have an “F” variant, which means the integrated graphics are disabled, and F models are also cheaper than their non-F counterparts. There are now seven 12th-gen CPUs that are unlocked:

  • Core i9-12900KS — $739
  • Core i9-12900K — $589
  • Core i9-12900KF — $ 564
  • Core i7-12700K — $409
  • Core i7-12700KF — $384
  • Core i5-12600K — $289
  • Core i5-12600KF — $264

Intel announced a further 22 Alder Lake processors in early 2022 that have since released. These chips support the rest of the range, offering locked variations of the above models, as well as inexpensive Core i5 and Core i3 options.

At least in the U.S., Intel didn’t raise prices much over 11th-gen chips. The i9 and i5 models have seen a slight bump, while the i7’s pricing is the same as the previous generation. Despite some price bumps, Intel’s CPUs are generally priced lower than AMD’s Ryzen CPUs, which is notable since Intel has usually been the more expensive option.

The box designs are mostly unchanged from the previous generation. However, the flagship Core i9-12900KS and the former flagship 12900K come slotted inside a golden wafer replica in the box.

Except for the Core i9-12900K and 12900KS, the seven chips listed above don’t come with anything but the CPU. The other 22 CPUs come with one of Intel’s redesigned Laminar CPU coolers.

Specs

Intel now has 12th-gen desktop processors from 16 cores down to only two, offering options across the price and performance spectrum. Although Alder Lake is known for having hybrid architecture, only about half of the chips come with a mix of performant (P) cores and efficient (E) cores. Here’s a look at the desktop range:

Cores Base frequency Max boost frequency Intel Smart Cache (L3) Integrated graphics Base power Max turbo power
Core i9-12900KS 16 (8P + 8E) 3.4GHz 5.3GHz 30MB Intel UHD 770 150W 241W
Core i9-12900K 16 (8P + 8E) 3.2GHz 5.2GHz 30MB Intel UHD 770 125W 241W
Core i9-12900KF 16 (8P + 8E) 3.2GHz 5.2GHz 30MB N/A 125W 241W
Core i9-12900 16 (8P + 8E) 2.4GHz 5.1GHz 30MB UHD 770 65W 202W
Core i9-12900F 16 (8P + 8E) 2.4GHz 5.1GHz 30MB N/A 65W 202W
Core i7-12700K 12 (8P + 4E) 3.6GHz 5.0GHz 25MB Intel UHD 770 125W 190W
Core i7-12700KF 12 (8P + 4E) 3.6GHz 5.0GHz 25MB N/A 125W 190W
Core i7-12700 12 (8P + 4E) 2.1GHz 4.9GHz 25MB UHD 770 65W 180W
Core i7-12700F 12 (8P + 4E) 2.1GHz 4.9GHz 25MB N/A 65W 180W
Core i5-12600K 10 (6P + 4E) 3.7GHz 4.9GHz 20MB Intel UHD 770 125W 150W
Core i5-12600KF 10 (6P + 4E) 3.7GHz 4.9GHz 20MB N/A 125W 150W
Core i5-12600 6 3.3GHz 4.8GHz 18MB UHD 770 65W 117W
Core i5-12500 6 3.0GHz 4.6GHz 18MB UHD 770 65W 117W
Core i5-12400 6 2.5GHz 4.4GHz 18MB UHD 730 65W 117W
Core i5-12400F 6 2.5GHz 4.4GHz 18MB N/A 65W 117W
Core i3-12300 4 3.5GHz 4.4GHz 12MB UHD 730 60W 89W
Core i3-12100 4 3.3GHz 4.3GHz 12MB UHD 730 60W 89W
Core i3-12100F 4 3.3GHz 4.3GHz 12MB N/A 58W 89W
Pentium Gold G7400 2 3.7GHz N/A 6MB UHD 710 46W N/A
Celeron G6900 2 3.4GHz N/A 4MB UHD 710 46W N/A
Core i9-12900T 16 (8P + 8E) 1.4GHz 4.9GHz 30MB UHD 770 35W 106W
Core i7-12700T 12 (8P + 4E) 1.4GHz 4.7GHz 25MB UHD 770 35W 99W
Core i5-12600T 6 2.1GHz 4.6GHz 18MB UHD 770 35W 74W
Core i5-12500T 6 2.0GHz 4.4GHz 18MB UHD 770 35W 74W
Core i5-12400T 6 1.8GHz 4.2GHz 18MB UHD 730 35W 74W
Core i3-12300T 4 2.3GHz 4.2GHz 12MB UHD 730 35W 69W
Core i3-12100T 4 2.2GHz 4.1GHz 12MB UHD 730 35W 69W
Pentium Gold G7400T 2 3.1GHz N/A 6MB UHD 710 35W N/A
Celeron G6900T 2 2.8GHz N/A 4MB UHD 710 35W N/A

The balance of P-cores and E-cores is different for each model. Only the P-cores support hyperthreading, so the i9 model comes with 16 cores and 24 threads, the i7 model comes with 12 cores and 20 threads, and so on. Chips without the hybrid architecture come exclusively with P-cores, which support hyperthreading.

Frequency-wise, it’s hard to lock Alder Lake down. The P-cores and E-cores run at different frequencies, so there isn’t a single number to reference. With Intel’s updated Extreme Overclocking Utility (XTU), you can tweak the P-cores and E-cores independently to dial in an overclock.

The non-K models aren’t unlocked for overclocking, though some users have managed to bypass protective measures to overclock them anyway. Although Intel says not to overclock non-K models, it can result in as much as a 33% increase in performance for midrange processors.

Performance

Intel Core i9-12900K in a motherboard.
Jacob Roach / Digital Trends

With Alder Lake finally here, we can validate some of Intel’s performance claims. In our testing of the Core i9-12900K, we found massive gains over the previous generation and a significant lead over the competing Ryzen 9 5950X. The Core i9-12900KS, which is essentially an overclocked 12900K, slightly extended Intel’s lead over the 5950X.

Gaming is a big focus of Alder Lake. Intel says the generation brings up to a 28% improvement in games like Hitman 3 over the previous generation. Some of that is on the back of Windows 11, which is optimized for Alder Lake’s Thread Director feature, and DDR5 memory, which benefits games with its increased bandwidth.

Our own benchmarks back up the improvements in games. In the synthetic 3D Mark Time Spy, the Core i9-12900KS was about 9% faster than the Ryzen 9 5950X and Core i9-10900K. In a real game, Forza Horizon 4, the 12th-gen chip managed a massive 19% lead over the other two processors.

Intel Core i9-12900KS Intel Core i9-12900K AMD Ryzen 9 5950X Intel Core i9-10900K
3D Mark Time Spy  19,578 19,396 17,922 18,341
Red Dead Redemption 2 135 fps 137 fps 135 fps 129 fps
Assassin’s Creed Valhalla 110 fps 118 fps 121 fps 122 fps
Forza Horizon 4 238 fps 234 fps 201 fps 200 fps
Civilization VI (turn time, lower is better) 7.4 seconds 7.3 seconds 7.5 seconds 6.5 seconds

Still, not all games saw a benefit. Red Dead Redemption 2 is one example, as the Core i9-12900KS tied the Ryzen 9 5950X while the 12900K took a 2 fps lead. Similarly, in Assassin’s Creed Valhalla, the chip produced a somewhat lower frame rate than not only the 12900K (which is supposed to be the slower version).

Although gaming is important, Alder Lake is also focused on multitasking and content creation. In a common scenario where you’re playing a game while streaming and recording, Intel claimed the Core i9-12900K can deliver an 84% improvement in frame rate over the previous generation. Intel said the new chips are also up to 36% faster in photo-editing applications like Adobe Lightroom, 32% faster in Premiere Pro, and 37% faster in Autodesk Revit.

Those numbers are accurate based on our testing. In Photoshop, the Core i9-12900K was about 30% faster than the Ryzen 9 5950X, and in Premiere Pro, it was about 7% faster. The chip also produced an impressive 47-second render in Handbrake, marking a massive 35% improvement over the Core i9-10900K. In most of these benchmarks, the newer Core i9-12900KS extended Intel’s lead over AMD and the older Core i9-10900K.

In general computing, the Alder Lake still shows its power. Take Geekbench 5, for example, where the Core i9 model managed a 28% lead over the Ryzen 9 5950X. Paired with DDR4 however, the Core i9-12900K is actually slower.

Intel Core i9-12900KS Intel Core i9-12900K AMD Ryzen 9 5950X Intel Core i9-10900K
Cinebench R23 single-core 2,087 1,989 1,531 1,291
Cinebench R23 multi-core 26,372 27,344 27,328 13,614
Geekbench 5 single-core 2,008 2,036 1,726 1,362
Geekbench 5 multi-core 18,664 18,259 14,239 10,715
PC Mark 10 8,926 9,092 8,254 7,593
Handbrake (seconds, lower is better) 46 47 58 72
Pugetbench for Premiere Pro 1,347 1,066 992 855
Pugetbench for Photoshop 1,470 1,315 1,009 1,023
7-Zip  135,280 126,215 139,074 86,172

We’ve only tested the Core i9-12900K and Core i9-12900KS, but the consensus among other reviewers is that the rest of Intel’s lineup can hang just fine with AMD’s. Though, when it comes to gaming performance, AMD has reclaimed the crown with the 5800X3D, which can’t beat the Core i9-12900KS in core heavy workloads but does win in games.

Intel says AMD is “in the rearview mirror” with the release of Alder Lake, and performance backs up that claim. However, AMD is launching its next-generation Ryzen 7000 series later this year, so Intel’s overall lead isn’t exactly secure.

Architecture design

Pins on Intel Core i9-12900K.
Jacob Roach / Digital Trends

Alder Lake uses a hybrid architecture that brings together two types of processing cores. The first is a performant core that mirrors what you’d typically find in a new processor generation, and the second is an efficient core that’s used to handle background tasks and beef up applications that like a lot of cores.

Intel is designing both cores on Intel 7, which is the new name for the Enhanced 10nm SuperFin process node. Golden Cove cores are the big ones, and they handle the bulk of work you’d do on a computer. Gracemont cores are the little ones, and they’re useful for handling background tasks or conserving battery life when a performant core isn’t needed.

Golden Cove cores are focused on high-frequency, single-threaded performance. Utilizing Intel’s new Matrix engine, the company says that the cores should have higher frequencies across applications. The Matrix engine is a coprocessor that handles matrix multiplication, which can speed up AI workloads in particular.

Intel Alder Lake performance core design.
Image used with permission by copyright holder

Gracemont cores handle the other side of the performance spectrum. Intel says they’re all about multi-threaded performance, juggling several lightweight tasks across multiple cores. Intel says they can perform about 40% above old Skylake cores at the same wattage.

Other changes to Alder Lake include support for PCIe Gen 5 and PCIe Gen 4, as well as DDR5 and DDR4 memory. Though Alder Lake supports both generations of DDR system memory, it’s up to the board manufacturer to decide which standard to support. Users can’t mix DDR4 and DDR5 modules on the same board. Thunderbolt 4 and Wi-Fi 6E Gig+ are also supported on Alder Lake.

Rumors suggest Intel will continue supporting DDR4 for its 13th-gen Raptor Lake processors.

Although not related to hardware architecture, Intel removed functionality for software guard extension (SGX) in 12th-gen processors. In short, you can’t play 4K Blu-Rays with 12th-gen processors. SGX is used to protect the disks from piracy, and Alder Lake processors won’t read them.

Overclocking

Intel Alder Lake pin layout.
Image used with permission by copyright holder

Alder Lake chips feature a thicker integrated heat spreader (IHS), which should give them more overclocking potential. Intel trimmed the die thickness and thermal interface material down to increase the IHS size, adding more bulk metal to the top of the chip for greater cooling potential.

Alder Lake marks the launch of Extreme Tuning Utility (XTU) 7.5, which allows you to tweak the ratio and voltage settings of Alder Lake’s P-cores and E-cores. You can overclock each of the cores independently. If you can’t be bothered, you can use Intel Speed Optimizer on the Core i9-12900K and Core i9-12900KF to add a moderate overclock with a single button.

In our testing, XTU boosted the chip to 5.0GHz all-core without increasing heat or power draw. With some manual tweaking, we managed a 5.4GHz overclock without much of a hassle, though it came carried a 300W power draw with it.

New socket and motherboards

Biostar Z170GT7
Bill Roberson/Digital Trends

Intel is moving to the Z690 platform with Alder Lake, which features the new LGA1700 socket. Many motherboard manufacturers, including Gigabyte, MSI, Asus, Colorful, and ASRock, have boards available with the new chipset and socket. Alder Lake supports DDR4 and DDR5, but as mentioned above, you won’t be able to use both on the same motherboard.

Z690 is Intel’s flagship chipset, but the company also has budget-focused options — H670, B660, and H610. These chipsets don’t support CPU overclocking and they come with fewer PCIe lanes. They still support Alder Lake’s other tentpole features, though, including DDR5 on the motherboard with the correct RAM slots.

DDR5 features the same number of pins as DDR4, but it has a different layout. Motherboard makers can choose which standard they want to support, and you can’t switch between them.

A new socket means a new layout for CPU coolers. Many CPU cooler makers, including Noctua, are offering free brackets that work with the LGA1700 socket. If you’re wondering what you need, make sure to read our guide on everything you need to upgrade to Intel 12th-gen Alder Lake.

Alder Lake mobile processors

Someone drawing on the Samsung Galaxy Book.
Image used with permission by copyright holder

Alder Lake is a platform for Intel. The company is using the same name and architecture across its desktop and mobile releases, breaking from the launch cadence it has established. Intel has HX-series (55W), H-series (45W), P-series (28W), and U-series (15W and 9W) mobile chips available. Here’s how the range looks:

Cores Max boost frequency Intel Smart Cache (L3) Base power
Core i9-12950HX 16 (8P + 8E) 5.0GHz 30MB 55W
Core i9-12900HX 16 (8P + 8E) 5.0GHz 30MB 55W
Core i7-12850HX 16 (8P + 8E) 4.8GHz 25MB 55W
Core i7-12800HX 16 (8P + 8E) 4.8GHz 25MB 55W
Core i7-12650HX
14 (6P + 8E) 4.7GHz 24MB 55W
Core i7-12600HX 12 (4P + 8E) 4.6GHz 18MB 55W
Core i5-12450HX 8 (4P + 4E) 4.4GHz 12MB 55W
Core i9-12900HK 14 (6P + 8E) 5.0GHz 24MB 45W
Core i9-12900H 14 (6P + 8E) 5.0GHz 24MB 45W
Core i7-12800H 14 (6P + 8E) 4.8GHz 24MB 45W
Core i7-12700H 14 (6P + 8E) 4.7GHz 24MB 45W
Core i7-12650H 10 (6P + 4E) 4.7GHz 24MB 45W
Core i5-12600H 12 (4P + 8E) 4.5GHz 18MB 45W
Core i5-12500H 12 (4P + 8E) 4.5GHz 18MB 45W
Core i5-12450H 8 (4P + 4E) 4.4GHz 12MB 45W
Core i7-1280P 14 (6P + 8E) 4.8GHz 24MB 28W
Core i7-1270P 12 (4P + 8E) 4.8GHz 18MB 28W
Core i7-1260P
12 (4P + 8E) 4.7GHz 18MB 28W
Core i5-1250P 12 (4P + 8E) 4.4GHz 12MB 28W
Core i5-1240P 12 (4P + 8E) 4.4GHz 12MB 28W
Core i3-1220P 10 (2P + 8E) 4.4GHz 12MB 28W
Core i7-1265U 10 (2P + 8E) 4.8GHz 12MB 15W
Core i7-1260U 10 (2P + 8E) 4.7GHz 12MB 9W
Core i5-1255U 10 (2P + 8E) 4.7GHz 12MB 15W
Core i5-1250U 10 (2P + 8E) 4.7GHz 12MB 9W
Core i5-1245U 10 (2P + 8E) 4.4GHz 12MB 15W
Core i5-1240U 10 (2P + 8E) 4.4GHz 12MB 9W
Core i5-1235U 10 (2P + 8E) 4.4GHz 12MB 15W
Core i5-1230U 10 (2P + 8E) 4.4GHz 12MB 9W
Core i3-1215U 6 (2P + 4E) 4.4GHz 10MB 15W
Core i3-1210U 6 (2P + 4E) 4.4GHz 10MB 9W
Pentium Gold 8505 5 (1P + 4E) 4.4GHz 8MB 15W
Pentium Gold 8500 5 (1P + 4E) 4.4GHz 8MB 9W
Celeron 7305 5 (1P + 4E) N/A 8MB 15W
Celeron 7300 5 (1P + 4E) N/A 8MB 9W

In our testing, the flagship Core i9-12900HK wipes the floor with the competition. In some cases, we found the chip to be as much as 21% faster than the competing Ryzen 9 5900HX, and at times, it even rivaled a desktop Core i9-10900K. We haven’t reviewed lower-end SKUs, but the consensus among other reviewers is that they are also quite good, with AMD’s flagship Ryzen 9 5900HX losing even to the Core i7-12700H. This isn’t surprising since the Ryzen 9 5900HX only has eight cores, and while AMD’s Zen 3 architecture is quite good, it’s hard to compete when you’re six cores down.

AMD’s Ryzen 6000 chips are here, as are Intel’s new HX models, so the mobile market is still hot in the middle of 2022.

Topics
Jacob Roach
Lead Reporter, PC Hardware
Jacob Roach is the lead reporter for PC hardware at Digital Trends. In addition to covering the latest PC components, from…
Intel’s upcoming Arrow Lake CPUs might run into cooling trouble
The cold plate and heat pipes on the Noctua NH-D15 G2 CPU cooler.

By nearly all accounts, Intel is gearing up to release its 15th-gen Arrow Lake CPUs in a matter of weeks. The new generation, which will compete for a slot among the best processors, will use the new LGA 1851 socket, and the redesigned package might be problematic when it comes to keeping the CPU cool.

According to famed overclocker and YouTuber der8auer, the hot spot on Arrow Lake CPUs is "quite a bit further north," meaning that the hottest part of the CPU is situated at the top of the package. Different hot spot locations is nothing new -- for instance, AMD's Ryzen 9 9950X has a hot spot more toward the southern part of the package -- but it's something that cooling companies will need to account for in order to get the best performance.

Read more
Intel Arrow Lake is right around the corner
Intel CEO Pat Gelsinger presents Intel's roadmap including Arrow Lake, Lunar Lake, and Panther Lake.

Intel's upcoming Arrow Lake processors have been the topic of much speculation in the last few months, but we're finally at the finish line. Multiple sources are reporting that the release date we've been hearing about for weeks is now final, meaning that Intel's next-gen processors are now less than a month away. Here's what we know.

With no Intel Innovation event this year, things have been quiet as far as Arrow Lake goes -- but the leaks never cease. The initial Arrow Lake (also known as Intel Core Ultra 200 series) release date that various tipsters spoke about was always said to be October 10, but a few weeks ago, it was revealed to be October 24. Now, with today's new information, we can say with some confidence that it appears to be the final release date.

Read more
Do CPUs require drivers?
AMD Rizen CPU 3 next to box

Your CPU is an important component in your PC, so like graphics cards, it should probably have its own CPU drivers, right? Not in this case. While there are drivers that are called chipset drivers, and technically there is microcode that runs on the chips themselves, processors of any budget can be installed without drivers.

There are plenty of drivers you should keep on top of, but the processor is not one of them.
Do CPUs have drivers?

Read more