Skip to main content

Could DNA be the key to passing digital data to future generations?

Dr. Nick Goldman
Nick Goldman of the European Molecular Biology Laboratory admires a vial of DNA data. European Molecular Biology Laboratory
Perhaps in predicting “bio-neural” circuitry to store and transfer data throughout the starship, the writers of the mid-1990’s TV series Star Trek: Voyager were prophetic. Over the past few years, researchers at Harvard, the European Molecular Biology Laboratory (EMBL) in Heidelberg, ETH Zurich university, and other research facilities have been experimenting with storing data in DNA. Researchers are starting to find we may be able to store data for thousands of years by using techniques first perfected by Mother Nature.

The Voyager engineers have 400 years or so on today’s scientists. DNA storage is probably a little closer to today than the 25th Century, where Star Trek: Voyager was set. Still, this budding technology has a lot of obstacles, among them prohibitive costs. If that can be conquered, though, all of today’s existing digital data could be stored and preserved in about four grams of synthesized DNA.

How synthetic DNA works

What makes DNA attractive for data storage is the density with which it can store data. Data is stored in nucleobases. Each nucleobase can represent at least one bit of data, and each living cell can contain millions of nucleobases. If all this is hard to fathom, look at this way: storing data in DNA will allow a density close to one-million gigabytes (GB), or one petabyte, per cubic millimeter. These absolutely dwarfs the data density of modern magnetic and electronic storage.

Another problem with current storage solutions, even solid state drives and magnetic tape, is that with time their reliability degrades and data is lost. SSDs can lose data if left unpowered for too long (a few months), making them unreliable for long-term storage. Magnetic tape lasts longer, but it can degrade over decades as its chemical makeup breaks down.

Encoding Stories and Big Data in DNA: Sriram Kosuri for the Future of StoryTelling 2012

DNA, left unprotected, behaves in much the same way. In fact, without some kind of protection, DNA wouldn’t last as long as most hard drives, perhaps only about two or three years. In the biological world, DNA degrades due to a number of factors, among them moisture, heat, and oxygen.

Maintaining data integrity, of course, entails protecting the DNA from the elements. Researchers at ETH Zurich university have addressed this issue by encapsulating the DNA in a “synthetic fossil” made of glass, much like nature protects DNA by encompassing it in fossilized bio-matter. Protecting DNA is more practical, at least in physical terms, than guarding magnetic tape because of DNA’s extreme data density. A single capsule can contain the data found on racks and racks of magnetic tape.

When will we see the first DNA drive?

Storing data in DNA will allow a density close to one-million gigabytes (GB), or one petabyte, per cubic millimeter

As you can imagine, the process of writing digital information onto genetic material isn’t exactly routine. You may have figured out that for now, and in the near future, this isn’t a replacement for the hard drive in your desktop, as it’s a one way street. Once you’ve written the data to the DNA and encased it in glass, that’s it, until you want to access the content.

Anyone seeking to read the data in the synthetic fossils can do it by dissolving the glass in a fluoride solution designed to leave the DNA unharmed. However, once the DNA is no longer fossilized it is once again susceptible to the elements and may degrade quickly.

For example, during the ETH Zurich experiment, where the DNA was stored in a simulated 10,000-year environment at 40 degrees Fahrenheit (4 degrees Celsius), at least one error showed up in about 80 percent of the strands. Around 8 percent of the strands were lost altogether.

Svalbard Global Seed Vault
Svalbard Global Seed Vault Landbruks/Flickr

Dr. Robert Grass, lead researcher of the ETH Zurich team, and his associates calculated that storing the same data at 0 degrees Fahrenheit would what (the same temperature as the inside of the Svalbard Global Seed Vault located on the Norwegian island, Spitsbergen). The seed vault is an un-staffed warehouse carved in the side of a mountain where thousands of seeds are stored to maintain the Earth’s diversity of crops in case of a disaster.

DNA storage certainly has a way to go before becoming mainstream. In its current state, it’s good only for preserving data for the ages. The biggest obstacle is the cost of experimentation, and the actual writing of data to DNA. Dr. Nick Goldman of EMBL has suggested that perhaps by the mid-2020s costs will have come down enough to make DNA data storage feasible on a large scale.

Obviously, the technology has a long way to go, and this probably won’t be the only convergence of information technology and biology over the next 5 to 10 years. Who knows, by then we may be operating our computers telepathically (and storing data in the unused portions of our brains).

Editors' Recommendations

William Harrel
William Harrel has been writing about computer technology for well over 25 years. He has authored or coauthored 20…
Trying to buy a GPU in 2023 almost makes me miss the shortage
Two AMD Radeon RX 7000 graphics cards on a pink surface.

The days of the GPU shortage are long over, but somehow, buying a GPU is harder than ever -- and that sentiment has very little to do with stock levels. It's just that there are no obvious candidates when shopping anymore.

In a generation where no single GPU stands out as the single best graphics card, it's hard to jump on board with the latest from AMD and Nvidia. I don't want to see another GPU shortage, but the state of the graphics card market is far from where it should be.
This generation is all over the place

Read more
HP printers are heavily discounted in Best Buy’s flash sale
The HP - OfficeJet Pro 8034e Wireless All-In-One Inkjet Printer on a desk with a smartphone.

There’s good news in store if you’re looking to land a new printer at a discount this weekend. Best Buy is having a 48-hour flash sale on HP printers, with several that can compete with the best printers seeing some good prices. HP is almost always one of the best laptop brands, and it’s one of the same when it comes to printers. So if you’re looking for a new home or office printer, read onward on how to save on an HP printer at Best Buy.
HP DeskJet 2755e — $60, was $85

The HP DeskJet 2755e is a good entry-level printer. It’s got you covered if your printing needs are pretty basic, or if you don’t need to print in mass. This is a color InkJet printer, which makes it good for almost all uses. It can also make copies and scan in color, and it has mobile and wireless printing functionality. You can get set up quickly and easily with the HP Smart app that guides you through the setup process, and you can also use this app to print, scan and copy documents from your phone.

Read more
This tiny ThinkPad can’t quite keep up with the MacBook Air M2
Lenovo ThinkPad X1 Nano Gen 3 rear view showing lid and logo.

While the laptop industry continues to move toward 14-inch laptops and larger, the 13-inch laptop remains an important category. One of the best is the Apple MacBook Air M2, with an extremely thin and well-built chassis, great performance, and incredibly long battery life.

Lenovo has recently introduced the third generation of its ThinkPad X1 Nano, one of the lightest laptops we've tested and a good performer as well. It's stiff competition, but which of these two diminutive laptops stands apart?
Specs and configurations

Read more