Skip to main content

A.I. analyzes video to detect signs of cerebral palsy in infants

Pose estimation of infant's spontaneous movements

An artificial intelligence algorithm capable of signaling early signs of neurodevelopment disorders in infants has been created by researchers in Finland and Italy. By analyzing conventional videos of infants, the algorithm can create “skeleton” videos, which depict a child’s movement in the form of a stick figure. The research could help in early detection of neurodevelopment disorders, such as cerebral palsy.

Recommended Videos

“Medical doctors have shown that observing special features in the spontaneous movements of infants may be the most accurate way to predict later development of cerebral palsy,” Sampsa Vanhatalo, a neurophysiologist at the University of Helsinki who led the study, told Digital Trends. “However, such visual analysis of infant movements by experts is always subjective, and it requires substantial training. Here, we showed for the first time that it is possible to extract infant movements from conventional video recordings. That is, we make skeleton videos, at a very high accuracy.”

The algorithm works by scanning a conventional video of an infant to detect certain poses and movement patterns. The algorithm uses a “pose estimation method” to generate a stick-man depiction of the infant. These movement patterns can then be analyzed to detect normal or unusual movements.

Children are typically diagnosed with cerebral palsy between the ages of six months and two years. However, early detection would allow doctors to begin to provide therapeutic interventions to alleviate the impact of the condition. A system that can help doctors detect early signs of the condition could offer children a jump start on treatment.

“A pose estimation method of this kind is like a Rosetta stone, which opens the world to myriad of A.I. solutions for advanced assessments, diagnostics, and monitoring of spontaneous infant behavior,” Vanhatalo said. “The first application would be to develop a diagnostic classifier of infant movements to be used in screening of at-risk infants that are not able to reach specialist attention. Indeed, most infants in this world live in areas or in conditions beyond the immediate reach of pertinent medical expertise.”

Vanhatalo partnered with researchers from the University of Pisa and Neuro Event Labs, a company that specializes in A.I.-based video analysis for medical purposes.

A paper detailing the research was published this month in the journal Acta Pediatrica.

Dyllan Furness
Dyllan Furness is a freelance writer from Florida. He covers strange science and emerging tech for Digital Trends, focusing…
Google’s LaMDA is a smart language A.I. for better understanding conversation
LaMDA model

Artificial intelligence has made extraordinary advances when it comes to understanding words and even being able to translate them into other languages. Google has helped pave the way here with amazing tools like Google Translate and, recently, with its development of Transformer machine learning models. But language is tricky -- and there’s still plenty more work to be done to build A.I. that truly understands us.
Language Model for Dialogue Applications
At Tuesday’s Google I/O, the search giant announced a significant advance in this area with a new language model it calls LaMDA. Short for Language Model for Dialogue Applications, it’s a sophisticated A.I. language tool that Google claims is superior when it comes to understanding context in conversation. As Google CEO Sundar Pichai noted, this might be intelligently parsing an exchange like “What’s the weather today?” “It’s starting to feel like summer. I might eat lunch outside.” That makes perfect sense as a human dialogue, but would befuddle many A.I. systems looking for more literal answers.

LaMDA has superior knowledge of learned concepts which it’s able to synthesize from its training data. Pichai noted that responses never follow the same path twice, so conversations feel less scripted and more responsively natural.

Read more
How the USPS uses Nvidia GPUs and A.I. to track missing mail
A United States Postal Service USPS truck driving on a tree-lined street.

The United States Postal Service, or USPS, is relying on artificial intelligence-powered by Nvidia's EGX systems to track more than 100 million pieces of mail a day that goes through its network. The world's busiest postal service system is relying on GPU-accelerated A.I. systems to help solve the challenges of locating lost or missing packages and mail. Essentially, the USPS turned to A.I. to help it locate a "needle in a haystack."

To solve that challenge, USPS engineers created an edge A.I. system of servers that can scan and locate mail. They created algorithms for the system that were trained on 13 Nvidia DGX systems located at USPS data centers. Nvidia's DGX A100 systems, for reference, pack in five petaflops of compute power and cost just under $200,000. It is based on the same Ampere architecture found on Nvidia's consumer GeForce RTX 3000 series GPUs.

Read more
Algorithmic architecture: Should we let A.I. design buildings for us?
Generated Venice cities

Designs iterate over time. Architecture designed and built in 1921 won’t look the same as a building from 1971 or from 2021. Trends change, materials evolve, and issues like sustainability gain importance, among other factors. But what if this evolution wasn’t just about the types of buildings architects design, but was, in fact, key to how they design? That’s the promise of evolutionary algorithms as a design tool.

While designers have long since used tools like Computer Aided Design (CAD) to help conceptualize projects, proponents of generative design want to go several steps further. They want to use algorithms that mimic evolutionary processes inside a computer to help design buildings from the ground up. And, at least when it comes to houses, the results are pretty darn interesting.
Generative design
Celestino Soddu has been working with evolutionary algorithms for longer than most people working today have been using computers. A contemporary Italian architect and designer now in his mid-70s, Soddu became interested in the technology’s potential impact on design back in the days of the Apple II. What interested him was the potential for endlessly riffing on a theme. Or as Soddu, who is also professor of generative design at the Polytechnic University of Milan in Italy, told Digital Trends, he liked the idea of “opening the door to endless variation.”

Read more