Skip to main content

Stellar fight to the death illuminates unusual star life cycle

Dramatic events are afoot in the constellation of Centaurus: A stellar fight to the death. Although the HD101584 star system appears in our sky as one bright light, it actually consists of two stars which are so close together they form a binary system — and one is cannibalizing the other.

Most stars follow a well-known life cycle: After forming and starting hydrogen fusion as a main sequence star, like our sun, they then change color and become red giants when their fuel runs out. Eventually, a red giant will either shed its outer layers to leave behind a core called a white dwarf, or, if it is large enough, it can explode as a supernova and leave behind a neutron star or a black hole.

Recommended Videos

But HD101584 is different. There, one of the stars had grown so large in its red giant phase that it engulfed the other, swallowing it whole. The smaller star began spiraling toward the larger one, coming close to its core without actually colliding. And this process triggered an outburst from the larger star, in which it threw off its outer layers.

The new ALMA image of the binary HD101584
This new ALMA image shows the outcome of a stellar fight: A complex and stunning gas environment surrounding the binary HD101584. The colors represent speed, going from blue — gas moving the fastest towards us — to red — gas moving the fastest away from us. Jets, almost along the line of sight, propel the material in blue and red. The stars in the binary are located at the single bright dot at the center of the ring-like structure shown in green, which is moving with the same velocity as the system as a whole along the line of sight. Astronomers believe this ring has its origin in the material ejected as the lower mass star in the binary spiraled towards its red-giant partner. ALMA (ESO/NAOJ/NRAO), Olofsson et al. Acknowledgement: Robert Cumming

This unusual occurrence has impacted the life cycles of the larger star. “The star system HD101584 is special in the sense that this ‘death process’ was terminated prematurely and dramatically as a nearby low-mass companion star was engulfed by the giant,” lead author Hans Olofsson of the Chalmers University of Technology in Gothenburg, Sweden, explained in a statement.

This fight has left its mark on the system too, with layers of gas spread across the region and the core of the larger star now left exposed. Jets of gas created by the interactions of the two stars spewed outward, which can be seen in the rings of gas traveling out from the nebula.

A wide-field view showing the region of the sky where HD101584 is located.
This wide-field view shows the region of the sky, in the constellation of Centaurus, where HD101584, a gas cloud surrounding a binary star recently studied with ALMA and APEX, is located. This view was created from images forming part of the Digitized Sky Survey 2. ESO/Digitized Sky Survey 2. Acknowledgement: Davide De Martin

Studying this particular system with the Atacama Large Millimeter/submillimeter Array (ALMA) and the Atacama Pathfinder Experiment (APEX) is giving astronomers new insights into how stars die.

“Currently, we can describe the death processes common to many sun-like stars, but we cannot explain why or exactly how they happen,” co-author Sofia Ramstedt from Uppsala University in Uppsala, Sweden, said in the same statement.

“HD101584 gives us important clues to solve this puzzle since it is currently in a short transitional phase between better studied evolutionary stages. With detailed images of the environment of HD101584 we can make the connection between the giant star it was before, and the stellar remnant it will soon become.”

The findings are published in the journal Astronomy & Astrophysics.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Juiced Bikes offers 20% off on all e-bikes amid signs of bankruptcy
Juiced Bikes Scrambler ebike

A “20% off sitewide” banner on top of a company’s website should normally be cause for glee among customers. Except if you’re a fan of that company’s products and its executives remain silent amid mounting signs that said company might be on the brink of bankruptcy.That’s what’s happening with Juiced Bikes, the San Diego-based maker of e-bikes.According to numerous customer reports, Juiced Bikes has completely stopped responding to customer inquiries for some time, while its website is out of stock on all products. There are also numerous testimonies of layoffs at the company.Even more worrying signs are also piling up: The company’s assets, including its existing inventory of products, is appearing as listed for sale on an auction website used by companies that go out of business.In addition, a court case has been filed in New York against parent company Juiced Inc. and Juiced Bike founder Tora Harris, according to Trellis, a state trial court legal research platform.Founded in 2009 by Harris, a U.S. high-jump Olympian, Juiced Bikes was one of the early pioneers of the direct-to-consumer e-bike brands in the U.S. market.The company’s e-bikes developed a loyal fandom through the years. Last year, Digital Trends named the Juiced Bikes Scorpion X2 as the best moped-style e-bike for 2023, citing its versatility, rich feature set, and performance.The company has so far stayed silent amid all the reports. But should its bankruptcy be confirmed, it could legitimately be attributed to the post-pandemic whiplash experienced by the e-bike industry over the past few years. The Covid-19 pandemic had led to a huge spike in demand for e-bikes just as supply chains became heavily constrained. This led to a ramp-up of e-bike production to match the high demand. But when consumer demand dropped after the pandemic, e-bike makers were left with large stock surpluses.The good news is that the downturn phase might soon be over just as the industry is experiencing a wave of mergers and acquisitions, according to a report by Houlihan Lokey.This may mean that even if Juiced Bikes is indeed going under, the brand and its products might find a buyer and show up again on streets and trails.

Read more
Volkswagen plans 8 new affordable EVs by 2027, report says
volkswagen affordable evs 2027 id 2all

Back in the early 1970s, when soaring oil prices stifled consumer demand for gas-powered vehicles, Volkswagen took a bet on a battery system that would power its first-ever electric concept vehicle, the Elektro Bus.
Now that the German automaker is facing a huge slump in sales in Europe and China, it’s again turning to affordable electric vehicles to save the day.Volkswagen brand chief Thomas Schaefer told German media that the company plans to bring eight new affordable EVs to market by 2027."We have to produce our vehicles profitably and put them on the road at affordable prices," he is quoted as saying.
One of the models will be the ID.2all hatchback, the development of which is currently being expedited to 36 months from its previous 50-month schedule. Last year, VW unveiled the ID.2all concept, promising to give it a price tag of under 25,000 euros ($27,000) for its planned release in 2025.VW CEO Larry Blume has also hinted at a sub-$22,000 EV to be released after 2025.It’s unclear which models would reach U.S. shores. Last year, VW America said it planned to release an under-$35,000 EV in the U.S. by 2027.The price of batteries is one of the main hurdles to reduced EV’s production costs and lower sale prices. VW is developing its own unified battery cell in several European plants, as well as one plant in Ontario, Canada.But in order for would-be U.S. buyers to obtain the Inflation Reduction Act's $7,500 tax credit on the purchase of an EV, the vehicle and its components, including the battery, must be produced at least in part domestically.VW already has a plant in Chattanooga, Tennesse, and is planning a new plant in South Carolina. But it’s unclear whether its new unified battery cells would be built or assembled there.

Read more
Nissan launches charging network, gives Ariya access to Tesla SuperChargers
nissan charging ariya superchargers at station

Nissan just launched a charging network that gives owners of its EVs access to 90,000 charging stations on the Electrify America, Shell Recharge, ChargePoint and EVgo networks, all via the MyNissan app.It doesn’t stop there: Later this year, Nissan Ariya vehicles will be getting a North American Charging Standard (NACS) adapter, also known as the Tesla plug. And in 2025, Nissan will be offering electric vehicles (EVs) with a NACS port, giving access to Tesla’s SuperCharger network in the U.S. and Canada.Starting in November, Nissan EV drivers can use their MyNissan app to find charging stations, see charger availability in real time, and pay for charging with a payment method set up in the app.The Nissan Leaf, however, won’t have access to the functionality since the EV’s charging connector is not compatible. Leaf owners can still find charging stations through the NissanConnectEV and Services app.Meanwhile, the Nissan Ariya, and most EVs sold in the U.S., have a Combined Charging System Combo 1 (CCS1) port, which allows access to the Tesla SuperCharger network via an adapter.Nissan is joining the ever-growing list of automakers to adopt NACS. With adapters, EVs made by General Motors, Ford, Rivian, Honda and Volvo can already access the SuperCharger network. Kia, Hyundai, Toyota, BMW, Volkswagen, and Jaguar have also signed agreements to allow access in 2025.
Nissan has not revealed whether the adapter for the Ariya will be free or come at a cost. Some companies, such as Ford, Rivian and Kia, have provided adapters for free.
With its new Nissan Energy Charge Network and access to NACS, Nissan is pretty much covering all the bases for its EV drivers in need of charging up. ChargePoint has the largest EV charging network in the U.S., with over 38,500 stations and 70,000 charging ports at the end of July. Tesla's charging network is the second largest, though not all of its charging stations are part of the SuperCharger network.

Read more