Skip to main content

Good at StarCraft? DARPA wants to train military robots with your brain waves

Douglas Levere, University at Buffalo

The 1984 movie The Last Starfighter tells the story of a teenager whose calling in life seems to be nothing more than to play arcade games. Fortunately, he’s spectacularly good at it. The game he’s best at is a video game called, as the movie’s title would have it, Starfighter. In it, the player must defend their homestead, The Frontier, from the perils of Xur and the Ko-Dan Armada by way of a series of wireframe laser battles.

But there’s a twist. It turns out that Starfighter isn’t simply a game; it’s actually a kind of test. The war with Xur and the Ko-Dan Armada is real, and the arcade game — with its demands on rapid-fire reaction times on the part of players — is a stealth recruiting tool, intended to seek out the best of the best to become genuine starfighters.

More than 35 years after The Last Starfighter hit theaters, engineers from the University at Buffalo, New York, Artificial Intelligence Institute have received funding from DARPA, the U.S. Defense Advanced Research Projects Agency, to carry out research that’s… well, let’s just say that it’s extremely similar. They have built a real-time strategy game, currently unnamed, that’s reminiscent of existing games like StarCraft or Stellaris in style. In this game, players must use resources to build units and defeat enemies; manipulating large numbers of agents on-screen to complete their mission objectives.

But this isn’t any ordinary gaming experience. When people play the University at Buffalo’s new strategy game, they first have to agree to be hooked up to electroencephalogram (EEG) technology so that the game’s designers can record their brain activity. As they play, their eye movements are also tracked by way of special ultra high-speed cameras to see exactly how they respond to what they’re doing. This information, which can be teased out using machine learning algorithms, will then be used to develop new algorithms that can help train large numbers of future robots. In particular, the hope is that these insights into complex decision-making can improve coordination between large teams of autonomous air and ground robots. You know, should the game be brought to life.

Patrik Stollarz/Stringer/Getty Images

For anyone who grew up on movies like The Last Starfighter, this will seem strangely familiar. Although there’s a twist here, too. In The Last Starfighter (and other sci-fi stories which tread similar ground, such as Orson Scott Card’s Ender’s Game and Ernest Cline’s Armada), the goal is to train humans to have the kind of lightning fast reflexes that would normally be found in a machine. In this case, it’s different. The purpose of the University at Buffalo’s new gaming project isn’t to make players more machine-like.

Just the opposite, in fact. It’s all about trying to make machines that think more like humans.

Training tomorrow’s swarms today

“We’re trying to recruit [participants] who have strong gaming experience,” Souma Chowdhury, assistant professor of mechanical and aerospace engineering in the School of Engineering and Applied Sciences, told Digital Trends.

Chowdhury is one of the lead investigators on the project. He pauses and gives a nervous chuckle; the slightest hint of an apology creeping into his voice. “I myself do not have gaming experience,” he said. “I’m not a computer gamer at all. But many of our students are into games like crazy.”

“We’re trying to recruit [participants] who have strong gaming experience.”

Chowdhury’s own area of interest is swarm intelligence, a branch of computer science dating back to the late-1980s. Swarm intelligence is all about the collective behavior of decentralized, self-organized systems, both virtual and robotic. “It’s a real hot topic,” he said. “It’s becoming known that there are a lot of different applications which could be done by not using a single $1 million robot, but rather a large swarm of simpler, cheaper robots. These could be ground-based, air-based, or a combination of those two approaches.”

Some researchers in swarm robotics try and create swarms that can carry out complex procedures by hand-crafting the actions of every agent involved; the way you might coach each member of a dance troop so they can master a complex routine. Put them all together and you’ll get something that looks like emergent collaboration, although it’s actually a collection of individuals doing their own thing. The idea of using modern machine learning artificial intelligence is that it could give robot swarms the ability to more autonomously function as a meaningful collective.

Douglas Levere, University at Buffalo

But that’s easier said than done. Training one robot to do something requires a significant amount of training. Training a swarm, potentially with varying abilities, to complete tasks in complex, uncertain environments is a whole lot trickier. It means running tens of thousands of simulations, making the process extremely time-consuming and expensive. The idea driving this new project is that watching humans play the game will make it easier for machines to learn.

“Imagine walking into a classroom where there’s no teacher, and saying ‘let’s learn algebra,’” Chowdhury said. “You can learn just using exercises and textbooks. But it’s going to take a lot more time. If you have a teacher you can follow it’ll make it faster. In this case, we want to see how humans play this game and then use that to significantly speed up the A.I. in learning the behavior. Before it would be necessary to run 10,000 simulations to learn. Now we only need to run perhaps 1,000 simulations and augment this with data from humans.”

The researchers believe that, by observing the type of tactical or strategic decisions humans take when they play a strategy game, it will be possible to work out which features and events motivate these actions.

Teaching the machines

“The project is ongoing, at a pretty aggressive pace,” Chowdhury said. “We are around the halfway mark.”

At present, they’ve yet to start the data-gathering phase of the project, although Chowdhury has a good idea of the format that it will take. The plan is to carry out experiments with around 25 participants. Each participant will play between six and seven games with different randomized settings and levels of complexity. Unlike games such as StarCraft, which can last for hours, in this case each game will go on for only last only between five and ten minutes. That will be sufficient to measure decision-making strategies, and for these features of interest to be extracted using algorithms and scripts developed by the team.

“Humans can come up with very unique strategies that an A.I. might not ever learn.”

“At this point, it is difficult to comment on the amount or size of data that will be eventually collected,” Chowdhury said. However, the aim is reportedly to eventually scale up to 250 aerial and ground robots, working in highly complex situations. One example might be dealing with sudden loss of visibility due to smoke. The team plans to develop algorithms, modeled on human behavior, that will allow them to adapt to challenges such as this.

“Humans can come up with very unique strategies that an A.I. might not ever learn,” he continued. “A lot of the hype we see in A.I. are in applications that are relatively deterministic environments. But in terms of contextual reasoning in a real environment to get stuff done? That’s still at a nascent stage.”

Humans make the strategies

In Daniel Kahneman’s 2011 book Thinking, Fast and Slow, the Nobel-winning economist and psychologist describes two different modes of thought. The first system is fast and instinctive, the kind of thing we might call intuition. That might be locating the source of a specific sound, completing the phrase “war and…” or, yes, blasting Ko-Dan ships out of the air (or lack thereof) in Starfighter. The second system is slower, more deliberate, more logical. It’s centered on conscious thinking — which in this case might very well refer to forming strategies.

Chowdhury doesn’t cite Kahneman’s work when he discusses the project. But it’s hard not to be reminded of it. As he points out, machines are already capable of an impressive number of autonomous features. A $10,000 drone possesses some impressive smarts when it comes to navigating between locations. The same is true with agents in a strategy game. Units are often governed by low level rules which allow them to react to their surroundings. That could mean attacking or defending if they are confronted by an enemy. It might also mean being able to maintain formations as they move around the map. But in both cases what’s missing is the overarching strategy needed to execute tasks.

“You don’t need a human to do low level control, controlling each agent,” Chowdhury said. “That’s not what we’re interested in. They’re not controlling every single robot and where they’re going. The human role is more that of a supervisor or a tactician. A good analogy would be that, in a disaster response environment, you have a supervisor. They might have a team of 100 rescuers working under them. There’s a hierarchy, but the supervisor does not tell each of those team members exactly what they should do. The rescuers make a lot of independent decisions, but the supervisor creates the overall tactics. That’s what we want to build.”

If Chowdhury and his team get their way, the robot swarms of tomorrow will be a whole lot smarter. And they’ll have gamers to thank for it.

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Juiced Bikes offers 20% off on all e-bikes amid signs of bankruptcy
Juiced Bikes Scrambler ebike

A “20% off sitewide” banner on top of a company’s website should normally be cause for glee among customers. Except if you’re a fan of that company’s products and its executives remain silent amid mounting signs that said company might be on the brink of bankruptcy.That’s what’s happening with Juiced Bikes, the San Diego-based maker of e-bikes.According to numerous customer reports, Juiced Bikes has completely stopped responding to customer inquiries for some time, while its website is out of stock on all products. There are also numerous testimonies of layoffs at the company.Even more worrying signs are also piling up: The company’s assets, including its existing inventory of products, is appearing as listed for sale on an auction website used by companies that go out of business.In addition, a court case has been filed in New York against parent company Juiced Inc. and Juiced Bike founder Tora Harris, according to Trellis, a state trial court legal research platform.Founded in 2009 by Harris, a U.S. high-jump Olympian, Juiced Bikes was one of the early pioneers of the direct-to-consumer e-bike brands in the U.S. market.The company’s e-bikes developed a loyal fandom through the years. Last year, Digital Trends named the Juiced Bikes Scorpion X2 as the best moped-style e-bike for 2023, citing its versatility, rich feature set, and performance.The company has so far stayed silent amid all the reports. But should its bankruptcy be confirmed, it could legitimately be attributed to the post-pandemic whiplash experienced by the e-bike industry over the past few years. The Covid-19 pandemic had led to a huge spike in demand for e-bikes just as supply chains became heavily constrained. This led to a ramp-up of e-bike production to match the high demand. But when consumer demand dropped after the pandemic, e-bike makers were left with large stock surpluses.The good news is that the downturn phase might soon be over just as the industry is experiencing a wave of mergers and acquisitions, according to a report by Houlihan Lokey.This may mean that even if Juiced Bikes is indeed going under, the brand and its products might find a buyer and show up again on streets and trails.

Read more
Volkswagen plans 8 new affordable EVs by 2027, report says
volkswagen affordable evs 2027 id 2all

Back in the early 1970s, when soaring oil prices stifled consumer demand for gas-powered vehicles, Volkswagen took a bet on a battery system that would power its first-ever electric concept vehicle, the Elektro Bus.
Now that the German automaker is facing a huge slump in sales in Europe and China, it’s again turning to affordable electric vehicles to save the day.Volkswagen brand chief Thomas Schaefer told German media that the company plans to bring eight new affordable EVs to market by 2027."We have to produce our vehicles profitably and put them on the road at affordable prices," he is quoted as saying.
One of the models will be the ID.2all hatchback, the development of which is currently being expedited to 36 months from its previous 50-month schedule. Last year, VW unveiled the ID.2all concept, promising to give it a price tag of under 25,000 euros ($27,000) for its planned release in 2025.VW CEO Larry Blume has also hinted at a sub-$22,000 EV to be released after 2025.It’s unclear which models would reach U.S. shores. Last year, VW America said it planned to release an under-$35,000 EV in the U.S. by 2027.The price of batteries is one of the main hurdles to reduced EV’s production costs and lower sale prices. VW is developing its own unified battery cell in several European plants, as well as one plant in Ontario, Canada.But in order for would-be U.S. buyers to obtain the Inflation Reduction Act's $7,500 tax credit on the purchase of an EV, the vehicle and its components, including the battery, must be produced at least in part domestically.VW already has a plant in Chattanooga, Tennesse, and is planning a new plant in South Carolina. But it’s unclear whether its new unified battery cells would be built or assembled there.

Read more
Nissan launches charging network, gives Ariya access to Tesla SuperChargers
nissan charging ariya superchargers at station

Nissan just launched a charging network that gives owners of its EVs access to 90,000 charging stations on the Electrify America, Shell Recharge, ChargePoint and EVgo networks, all via the MyNissan app.It doesn’t stop there: Later this year, Nissan Ariya vehicles will be getting a North American Charging Standard (NACS) adapter, also known as the Tesla plug. And in 2025, Nissan will be offering electric vehicles (EVs) with a NACS port, giving access to Tesla’s SuperCharger network in the U.S. and Canada.Starting in November, Nissan EV drivers can use their MyNissan app to find charging stations, see charger availability in real time, and pay for charging with a payment method set up in the app.The Nissan Leaf, however, won’t have access to the functionality since the EV’s charging connector is not compatible. Leaf owners can still find charging stations through the NissanConnectEV and Services app.Meanwhile, the Nissan Ariya, and most EVs sold in the U.S., have a Combined Charging System Combo 1 (CCS1) port, which allows access to the Tesla SuperCharger network via an adapter.Nissan is joining the ever-growing list of automakers to adopt NACS. With adapters, EVs made by General Motors, Ford, Rivian, Honda and Volvo can already access the SuperCharger network. Kia, Hyundai, Toyota, BMW, Volkswagen, and Jaguar have also signed agreements to allow access in 2025.
Nissan has not revealed whether the adapter for the Ariya will be free or come at a cost. Some companies, such as Ford, Rivian and Kia, have provided adapters for free.
With its new Nissan Energy Charge Network and access to NACS, Nissan is pretty much covering all the bases for its EV drivers in need of charging up. ChargePoint has the largest EV charging network in the U.S., with over 38,500 stations and 70,000 charging ports at the end of July. Tesla's charging network is the second largest, though not all of its charging stations are part of the SuperCharger network.

Read more