Skip to main content

Stem cell breakthrough allows scientists to grow and assemble human eyes

media1
You’ll soon be able to see the future with eyes grown in petri dishes. Scientists in Japan’s Osaka University have found a new way to turn stem cells into a human eyeball in what is (needless to say) a remarkable breakthrough for the medical community. According to lead biologist Kohji Nishida, a small sample of adult skin is all that would be required in order to grow retinas, corneas, lenses, and other key components of the eye.
Recommended Videos

To help visualize the process, the video above demonstrates the growth of human iPS cells over several weeks, as they spontaneously form four concentric zones. Each of these zones exhibits the characteristics of a different part of the eye, including the cornea, the lens, and the retina.

During the trial phase of their experiment, the Japanese team managed to culture and grow sheaths of rabbit corneas that actually enabled blind animals to see again. In tests, lab-grown corneas were given to rabbits born without this crucial part of the eye, resulting in restored vision. And while humans have yet to experience the potential benefits of this breakthrough, our species is next.

“We are now in the position to initiate first in-human clinical trials of anterior eye transplantation to restore visual function,” Nishida wrote in the team’s findings, published in Nature. The biologist is of the opinion that within three years, humans may be able to overcome blindness by way of stem-cell-grown corneas (and perhaps even other eye components).

“This research shows that various types of human stem cells are able to take on the characteristics of the cornea, lens, and retina,” said Professor Andrew Quantock of Cardiff University, who was also involved in the study. “Importantly, it demonstrates that one cell type — the corneal epithelium — could be further grown in the lab and then transplanted onto a rabbit’s eye where it was functional, achieving recovered vision.”

Incredibly enough, this is not the only vision-related breakthrough scientists have achieved this week. In a separate study, doctors were able to actually reverse blindness in 12 babies born with congenital cataracts. By removing the damaged lens and “coaxing nearby cells to repair the damage,” surgeons were able to create an entirely novel way of treating one of the most common eye diseases in the world today.

“An ultimate goal of stem cell research is to turn on the regenerative potential of one’s own stem cells for tissue and organ repair and disease therapy,” said Dr. Kang Zhang of the UC San Diego School of Medicine, who helped develop the technology involved in the remarkable success. He added, “… this work represents a new approach in how new human tissue or organs can be regenerated and human disease can be treated, and may have a broad impact on regenerative therapies by harnessing the regenerative power of our own body.”

This innovation, combined with that of the Japanese team, could result in what Zhang calls a “paradigm shift,” changing the way we treat eye disease forever.

Lulu Chang
Former Digital Trends Contributor
Fascinated by the effects of technology on human interaction, Lulu believes that if her parents can use your new app…
The best portable power stations
EcoFlow DELTA 2 on table at campsite for quick charging.

Affordable and efficient portable power is a necessity these days, keeping our electronic devices operational while on the go. But there are literally dozens of options to choose from, making it abundantly difficult to decide which mobile charging solution is best for you. We've sorted through countless portable power optionsĀ and came up with six of the best portable power stations to keep your smartphones, tablets, laptops, and other gadgets functioning while living off the grid.
The best overall: Jackery Explorer 1000

Jackery has been a mainstay in the portable power market for several years, and today, the company continues to set the standard. With three AC outlets, two USB-A, and two USB-C plugs, you'll have plenty of options for keeping your gadgets charged.

Read more
CES 2023: HD Hyundai’s Avikus is an A.I. for autonomous boat and marine navigation
Demonstration of NeuBoat level 2 autonomous navigation system at the Fort Lauderdale International Boat Show

This content was produced in partnership with HD Hyundai.
Autonomous vehicle navigation technology is certainly nothing new and has been in the works for the better part of a decade at this point. But one of the most common forms we see and hear about is the type used to control steering in road-based vehicles. That's not the only place where technology can make a huge difference. Autonomous driving systems can offer incredible benefits to boats and marine vehicles, too, which is precisely why HD Hyundai has unveiled its Avikus AI technology -- for marine and watercraft vehicles.

More recently, HD Hyundai participated in the Fort Lauderdale International Boat Show, to demo its NeuBoat level 2 autonomous navigation system for recreational boats. The name mashes together the words "neuron" and "boat" and is quite fitting since the Avikus' A.I. navigation tech is a core component of the solution, it will handle self-recognition, real-time decisions, and controls when on the water. Of course, there are a lot of things happening behind the scenes with HD Hyundai's autonomous navigation solution, which we'll dive into below -- HD Hyundai will also be introducing more about the tech at CES 2023.

Read more
This AI cloned my voice using just three minutes of audio
acapela group voice cloning ad

There's a scene in Mission Impossible 3 that you might recall. In it, our hero Ethan Hunt (Tom Cruise) tackles the movie's villain, holds him at gunpoint, and forces him to read a bizarre series of sentences aloud.

"The pleasure of Busby's company is what I most enjoy," he reluctantly reads. "He put a tack on Miss Yancy's chair, and she called him a horrible boy. At the end of the month, he was flinging two kittens across the width of the room ..."

Read more