Skip to main content

Shrimp from the Sahara sounds crazy, but it may be the future of aquaculture

Agriculture has come a long way in the past century. We produce more food than ever before — but our current model is unsustainable, and as the world’s population rapidly approaches the 8 billion mark, modern food production methods will need a radical transformation if they’re going to keep up. But luckily, there’s a range of new technologies that might make it possible. In this series, we’ll explore some of the innovative new solutions that farmers, scientists, and entrepreneurs are working on to make sure that nobody goes hungry in our increasingly crowded world.

Seafood is a big part of humanity’s diet, and it’s been that way for a very long time. According to archaeological evidence, Homo sapiens mastered the art of fishing somewhere around 40,000 years ago — and we’ve been eating seafood ever since.

The only problem, of course, is that nowadays there are significantly more people eating seafood than there were 40,000 years ago. There are so many seafood eaters on the planet now that we’ve passed the point where naturally bred fish can sustain us. So now, we farm our seafood — just like we farm wheat, corn, and potatoes.

We don’t just do it a little bit, either. Globally, aquaculture — the practice of breeding fish, crustaceans, mollusks, and aquatic plants — supplies more that 50 percent of all seafood produced for human consumption.

That number is expected to increase. According to the Food and Agriculture Organization of the United Nations, approximately 75 percent of the world’s fisheries are either exploited or depleted due to fishing, which will likely lead to the complete depletion of currently fished stocks by 2048. That means that over the next 15 years, we’ll need to produce an additional 40 million metric tons of farmed seafood in order to meet demand.

One-fifth of the world’s mangrove forests have been destroyed due to the expansion of shrimp and fish farming.

That’s a huge challenge given our current aquaculture practices, which are often inefficient, volatile (susceptible to disease), and damaging to the environment. So how do we scale production and avoid amplifying our existing problems?

The answer, of course, lies in science and technology. Right now, researchers and environmentalists all over the globe are working on a host of potential solutions that might provide a sustainable stock of farmed seafood that tastes great and won’t harm the environment.

In this article, we’ll explore one of the most promising ideas to come out of this effort: a revolutionary closed-loop shrimp farming technique that ditches the open ocean in favor of man-made inland pools where farmers can better control environmental conditions.

Shrimp Farming: A Brief History

The shrimp industry is a textbook example of the struggles our aquaculture system currently faces.

When commercial shrimp farming exploded in the 1970s, small-scale inland farms were launched to meet this demand and supplement the harvesting of the wild shrimp stock. These farms now supply more than 55 percent of the world’s shrimp, with a collective market value of more than $10 billion. Shrimp farming shows no signs of decline and has the highest growth rate in the aquaculture industry, expanding by 10 percent each year.

This steady increase in production is not without controversy. Farming is mostly concentrated in tropical areas where it takes between three and six months to raise market-sized shrimp. But land in tropical zones is limited, so farmers often clear-cut valuable, ecologically sensitive coastal habitats to create man-made pools for their shrimp.

mangrove forest
Image used with permission by copyright holder

That’s not good. According to a study by the U.N. University Institute for Water, Environment, and Health, approximately one-fifth of the world’s mangrove forests have been destroyed due to the expansion of shrimp and fish farming. These mangroves grow in salt marsh areas and provide valuable habitats for the spawning of wild fish species and other aquatic animals. They also absorb the greenhouse gas carbon dioxide and serve as a protective buffer from coastal storms.

But it’s not just mangrove depletion that’s causing concern. Commercial shrimp farms also face a number of health issues. Farm shrimp are typically one of two different species: Penaeus vannamei (Pacific white shrimp) and Penaeus monodon (giant tiger prawn). These two species are highly susceptible to disease, and infections can often wipe out entire harvests in one fell swoop.

To combat these crop-destroying infections, Asian farmers often use antibiotics and other chemical treatments designed to prevent the spread of disease. The only problem is that, due to the overuse of these antibiotics, farms now face a growing threat from antibiotic-resistant bacteria.

A Healthier and More Eco-Friendly Alternative

Luckily, there’s a small group of entrepreneurs who are risking it all to show the world there is a better way to farm shrimp. This revolution is taking hold in the United States, where several small-scale shrimp farms are now using a sustainable, zero-waste method to produce healthy, eco-friendly shrimp for local markets.

This zero-waste farming revolution is fueled by an innovative aquaculture technique called “Biofloc technology,” which allows nutrients to be recycled and reused in a closed-loop system.

New-age aquaculture farms can be located anywhere there’s sufficient indoor space.

In this system, shrimp are grown in climate-controlled indoor tanks that provide highly favorable conditions for them. As the shrimp grow and produce waste, microorganisms are introduced to detoxify the water and remove shrimp poop from the system. These microorganisms are then kept in check by zooplankton, which consume these detoxifying bacteria. The zooplankton, in turn, become food for the shrimp, allowing farmers to provide a portion of the shrimp’s nutritional needs free of charge.

Because the shrimp are grown in enclosed tanks, these new-age aquaculture farms can be located anywhere there’s sufficient indoor space. It doesn’t matter where you set up shop — Biofloc tech can be used practically anywhere — from a small farming community in Maryland to the middle of the Sahara Desert.

These indoors farms also use their space efficiently. According to Marvesta Shrimp Farms founder Scott Fritze, the company can produce shrimp in a 5-acre facility that would occupy two to three hundred acres of an outdoor farm. Because of this small footprint and zero-waste design, the Biofloc system eliminates the habitat destruction, the damaging eutrophication from wastewater release, and other harmful effects of traditional outdoor shrimp farming. Indoor farming is so eco-friendly that the practice has earned a “Best Choice” award from Seafood Watch, a watchdog agency that evaluates the ecological impact of wild-caught and farmed seafood in North America.

Indoor shrimp stocks are also healthier than their outdoor counterparts. The self-purifying, closed-loop system makes it easy to regulate nutrient levels and control disease. As a result, indoor shrimp can be raised without the use antibiotics or fertilizers, producing an end product that is both healthier and safer for consumers.

(Video: KSU Aquaculture Research Center)

There’s even a geographical benefit. The Biofloc method allows farmers to harvest shrimp quickly, and transport them from tank to market in just a few hours. In the future, this could allow fresh seafood deliveries to areas that are currently sustained by imports from coastal regions and other countries.

The Future of Seafood?

Inland shrimp farming may sound like a panacea for the shrimp farming industry, but the method does come with its own unique set of challenges.

The first is a high startup cost. Not only does a prospective Biofloc shrimp farmer need an indoor facility, he also needs to provide adequate heating, large-enough tanks to support a shrimp population, and a circulation system that’s disease- and contamination-free.

On top of that, investors are often hesitant to pour money into these ventures — and for good reason. Even if a farmer does have the resources to start up a shrimp farm, the venture is risky. Despite being less-prone to disease than traditional farms, Biofloc operations still aren’t immune to infection. One disease outbreak can wipe out an entire harvest, putting the company’s financial stability at risk.

Slowly but surely, aquaculture is moving inland.

Despite these hardships, there are several companies making a go of it in the indoor shrimp farming industry.

One of the pioneers in the U.S. indoor shrimp market is Maryland-based Marvesta. Founded in 2003, the company rode a wave of success until an illness outbreak in 2013 nearly shut down operations permanently. The company rebounded, however, and recently partnered with RDM Aquaculture to expand its operation to commercial farmers who want to harvest shrimp.

Another startup, Sky8 shrimp farm in Massachusets, is leveraging its proximity to the ocean by using filtered seawater from the Gulf of Maine to give the shrimp a distinctive flavor and texture that can’t be matched by frozen shrimp.

And it’s not just big companies like Sky8 and Marvesta that are flourishing. There are dozens of smaller operations out there, including ECO Shrimp Garden in New York and Sherlock Shrimp in Iowa, who are finding niches for shrimp in their local communities.

Slowly but surely, aquaculture is moving inland.

Kelly Hodgkins
Kelly's been writing online for ten years, working at Gizmodo, TUAW, and BGR among others. Living near the White Mountains of…
Juiced Bikes offers 20% off on all e-bikes amid signs of bankruptcy
Juiced Bikes Scrambler ebike

A “20% off sitewide” banner on top of a company’s website should normally be cause for glee among customers. Except if you’re a fan of that company’s products and its executives remain silent amid mounting signs that said company might be on the brink of bankruptcy.That’s what’s happening with Juiced Bikes, the San Diego-based maker of e-bikes.According to numerous customer reports, Juiced Bikes has completely stopped responding to customer inquiries for some time, while its website is out of stock on all products. There are also numerous testimonies of layoffs at the company.Even more worrying signs are also piling up: The company’s assets, including its existing inventory of products, is appearing as listed for sale on an auction website used by companies that go out of business.In addition, a court case has been filed in New York against parent company Juiced Inc. and Juiced Bike founder Tora Harris, according to Trellis, a state trial court legal research platform.Founded in 2009 by Harris, a U.S. high-jump Olympian, Juiced Bikes was one of the early pioneers of the direct-to-consumer e-bike brands in the U.S. market.The company’s e-bikes developed a loyal fandom through the years. Last year, Digital Trends named the Juiced Bikes Scorpion X2 as the best moped-style e-bike for 2023, citing its versatility, rich feature set, and performance.The company has so far stayed silent amid all the reports. But should its bankruptcy be confirmed, it could legitimately be attributed to the post-pandemic whiplash experienced by the e-bike industry over the past few years. The Covid-19 pandemic had led to a huge spike in demand for e-bikes just as supply chains became heavily constrained. This led to a ramp-up of e-bike production to match the high demand. But when consumer demand dropped after the pandemic, e-bike makers were left with large stock surpluses.The good news is that the downturn phase might soon be over just as the industry is experiencing a wave of mergers and acquisitions, according to a report by Houlihan Lokey.This may mean that even if Juiced Bikes is indeed going under, the brand and its products might find a buyer and show up again on streets and trails.

Read more
Volkswagen plans 8 new affordable EVs by 2027, report says
volkswagen affordable evs 2027 id 2all

Back in the early 1970s, when soaring oil prices stifled consumer demand for gas-powered vehicles, Volkswagen took a bet on a battery system that would power its first-ever electric concept vehicle, the Elektro Bus.
Now that the German automaker is facing a huge slump in sales in Europe and China, it’s again turning to affordable electric vehicles to save the day.Volkswagen brand chief Thomas Schaefer told German media that the company plans to bring eight new affordable EVs to market by 2027."We have to produce our vehicles profitably and put them on the road at affordable prices," he is quoted as saying.
One of the models will be the ID.2all hatchback, the development of which is currently being expedited to 36 months from its previous 50-month schedule. Last year, VW unveiled the ID.2all concept, promising to give it a price tag of under 25,000 euros ($27,000) for its planned release in 2025.VW CEO Larry Blume has also hinted at a sub-$22,000 EV to be released after 2025.It’s unclear which models would reach U.S. shores. Last year, VW America said it planned to release an under-$35,000 EV in the U.S. by 2027.The price of batteries is one of the main hurdles to reduced EV’s production costs and lower sale prices. VW is developing its own unified battery cell in several European plants, as well as one plant in Ontario, Canada.But in order for would-be U.S. buyers to obtain the Inflation Reduction Act's $7,500 tax credit on the purchase of an EV, the vehicle and its components, including the battery, must be produced at least in part domestically.VW already has a plant in Chattanooga, Tennesse, and is planning a new plant in South Carolina. But it’s unclear whether its new unified battery cells would be built or assembled there.

Read more
Nissan launches charging network, gives Ariya access to Tesla SuperChargers
nissan charging ariya superchargers at station

Nissan just launched a charging network that gives owners of its EVs access to 90,000 charging stations on the Electrify America, Shell Recharge, ChargePoint and EVgo networks, all via the MyNissan app.It doesn’t stop there: Later this year, Nissan Ariya vehicles will be getting a North American Charging Standard (NACS) adapter, also known as the Tesla plug. And in 2025, Nissan will be offering electric vehicles (EVs) with a NACS port, giving access to Tesla’s SuperCharger network in the U.S. and Canada.Starting in November, Nissan EV drivers can use their MyNissan app to find charging stations, see charger availability in real time, and pay for charging with a payment method set up in the app.The Nissan Leaf, however, won’t have access to the functionality since the EV’s charging connector is not compatible. Leaf owners can still find charging stations through the NissanConnectEV and Services app.Meanwhile, the Nissan Ariya, and most EVs sold in the U.S., have a Combined Charging System Combo 1 (CCS1) port, which allows access to the Tesla SuperCharger network via an adapter.Nissan is joining the ever-growing list of automakers to adopt NACS. With adapters, EVs made by General Motors, Ford, Rivian, Honda and Volvo can already access the SuperCharger network. Kia, Hyundai, Toyota, BMW, Volkswagen, and Jaguar have also signed agreements to allow access in 2025.
Nissan has not revealed whether the adapter for the Ariya will be free or come at a cost. Some companies, such as Ford, Rivian and Kia, have provided adapters for free.
With its new Nissan Energy Charge Network and access to NACS, Nissan is pretty much covering all the bases for its EV drivers in need of charging up. ChargePoint has the largest EV charging network in the U.S., with over 38,500 stations and 70,000 charging ports at the end of July. Tesla's charging network is the second largest, though not all of its charging stations are part of the SuperCharger network.

Read more