Skip to main content

Massive neutron stars smash together, forging gold in an explosive kilonova

Artist’s illustration of two colliding neutron stars. NASA/Swift/Dana Berry

The Laser Interferometer Gravitational-wave Observatory (LIGO) famously detects gravitational waves by looking at the collisions of black holes. It also looks at collisions of other cosmic bodies, such as when it detected the first observed merger between two neutron stars in 2017. Now, a team of astronomers has looked back at older data to observe what happens during these epic impacts.

When two neutron stars collide, the impact creates an explosion — not a supernova, which is what happens when a star dies, but a kilonova. The merging of the neutron stars gives off massive bursts of gamma rays and electromagnetic radiation, but the process isn’t purely destructive. It also creates, by forging heavy metals like platinum and gold. In fact, a kilonova forms several planets’ worth of heavy metals in one swoop, and it is believed that this is how the gold on Earth was created.

Since scientists observed the neutron star merger in 2017, they have learned more about what a kilonova would like like to us here on the Earth. And this has allowed them to look back at older data and spot previous kilonovae as well. There was a gamma-ray burst observed in August 2016, named GRB160821B, and recent re-examination of the data showed that a previously unnoticed kilonova had in fact occurred.

“The 2016 event was very exciting at first,” Eleonora Troja, lead author of the study, said in a statement. “It was nearby and visible with every major telescope, including NASA’s Hubble Space Telescope. But it didn’t match our predictions — we expected to see the infrared emission become brighter and brighter over several weeks.”

That’s not what happened though. “Ten days after the event, barely any signal remained,” Troja continued. “We were all so disappointed. Then, a year later, the LIGO event happened. We looked at our old data with new eyes and realized we had indeed caught a kilonova in 2016. It was a nearly perfect match. The infrared data for both events have similar luminosities and exactly the same time scale.”

As the data from the 2016 event looks so similar to the data from the 2017 event, the researchers are fairly confident that the 2016 event was also caused by the merging of two neutron stars. There are other ways to generate a kilonova, such as the merging of a black hole and a neutron star, but scientists think that this would likely generate different observations in terms of X-ray, infrared, radio and optical light signals.

The findings are published in the journal Monthly Notices of the Royal Astronomical Society.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
The best portable power stations
EcoFlow DELTA 2 on table at campsite for quick charging.

Affordable and efficient portable power is a necessity these days, keeping our electronic devices operational while on the go. But there are literally dozens of options to choose from, making it abundantly difficult to decide which mobile charging solution is best for you. We've sorted through countless portable power optionsĀ and came up with six of the best portable power stations to keep your smartphones, tablets, laptops, and other gadgets functioning while living off the grid.
The best overall: Jackery Explorer 1000

Jackery has been a mainstay in the portable power market for several years, and today, the company continues to set the standard. With three AC outlets, two USB-A, and two USB-C plugs, you'll have plenty of options for keeping your gadgets charged.

Read more
CES 2023: HD Hyundai’s Avikus is an A.I. for autonomous boat and marine navigation
Demonstration of NeuBoat level 2 autonomous navigation system at the Fort Lauderdale International Boat Show

This content was produced in partnership with HD Hyundai.
Autonomous vehicle navigation technology is certainly nothing new and has been in the works for the better part of a decade at this point. But one of the most common forms we see and hear about is the type used to control steering in road-based vehicles. That's not the only place where technology can make a huge difference. Autonomous driving systems can offer incredible benefits to boats and marine vehicles, too, which is precisely why HD Hyundai has unveiled its Avikus AI technology -- for marine and watercraft vehicles.

More recently, HD Hyundai participated in the Fort Lauderdale International Boat Show, to demo its NeuBoat level 2 autonomous navigation system for recreational boats. The name mashes together the words "neuron" and "boat" and is quite fitting since the Avikus' A.I. navigation tech is a core component of the solution, it will handle self-recognition, real-time decisions, and controls when on the water. Of course, there are a lot of things happening behind the scenes with HD Hyundai's autonomous navigation solution, which we'll dive into below -- HD Hyundai will also be introducing more about the tech at CES 2023.

Read more
This AI cloned my voice using just three minutes of audio
acapela group voice cloning ad

There's a scene in Mission Impossible 3 that you might recall. In it, our hero Ethan Hunt (Tom Cruise) tackles the movie's villain, holds him at gunpoint, and forces him to read a bizarre series of sentences aloud.

"The pleasure of Busby's company is what I most enjoy," he reluctantly reads. "He put a tack on Miss Yancy's chair, and she called him a horrible boy. At the end of the month, he was flinging two kittens across the width of the room ..."

Read more