Skip to main content

Probiotics for plants? Here’s how AI-optimized bacteria could accelerate agriculture

Indigo Agriculture cotton
Indigo Agriculture

The global population is rapidly rising. The rate is slowing, sure, but experts predict that two billion more people will inhabit the Earth by 2050. That’s equivalent to adding another India and a half, which will put the total global population at around 9.7 billion people. That’s a lot of mouths to feed and one huge task — especially considering our failure to do so at present.

Experts predict that two billion more people will inhabit the Earth by 2050.

If we’re going to feed all these extra people we won’t just need big ideas. We’ll need a bunch of microscopic microbes as well.

That’s the bet being made by a biotech startup called Indigo Agriculture whose plan is to pump plants with a bunch of beneficial microbes to make the crops grow faster, stronger, and more productively. It’s a long shot, but it could give farmers access to crops that not only grow better in current climates but are better prepared for the impacts of climate change around the world.

Microbes, Microbes Everywhere

At any given moment, you’re sitting in a sea of trillions of microbes that live on, in, and all around you. Though they’re invisible to the naked eye, they’re far from inert. A growing body of research is showing that microbes affect a wide range of factors, including our mood, our health, and even our ability to handle stress and fend off disease.

But our microbiome is in danger of being destabilized. Ever since we began swallowing antibiotics, the bacterial environment in our bodies has changed. Antibiotics work great for eliminating harmful bacteria but their indiscriminate nature means that they wipe out a lot of beneficial bacteria as well.

Indigo Agriculture

“Our microbes have evolved with us, enhancing our ability to maintain optimal health and fend off disease,” Lauren Moores, Vice President of Data Strategy and Data Sciences at Indigo, tells Digital Trends. “The mass adoption of antibiotics affected these beneficial microbes. So we’ve taken to consuming live and active cultures – probiotics – to repopulate our intestines with good bacteria.”

Much the same goes for plants. The widespread use of agricultural chemicals and fungicides have disrupted a nuanced plant microbiome that developed over millions of years. These chemicals kill disease causing bacteria, but they also eliminate specialized microbes that may help the plant better withstand stresses like drought, or grow more productively by trapping vital nutrients like nitrogen.

The Science of Indigo

Indigo’s founders figured that if the human microbiome has such a massive effect on human health, shouldn’t a plant’s microbiome also be key to its survival? And, if so, how do we identify which microbes are beneficial and for what purpose? And how do we restore these thriving communities of bacteria in our crops?

Microscopes on the Microbiome

Most studies conducted on microbial life have centered on the ones most closely associated with humans — like those found on our skin and in our gut. And though there has been a fair amount of research into microbes found on other animals, plant microbes (and the roles they play) have been relatively neglected until recently.

“Our microbes have evolved with us, enhancing our ability to maintain optimal health and fend off disease.”

“A lot of papers have come out in the last five years, kind of as a follow up to what we’ve learned from the microbiome in other [biological] systems,” Harsh Bais, a plant and soil scientists at the University of Delaware, says. “But the whole functional significance of the microbiome association in plants is still not fully out in terms of the detailed mechanisms of why a plant needs them,”

For decades, researchers have known that bacteria on plants and in the soil help “fix” nitrogen, allowing the plants to better access this key nutrient. But in 2015, Sharon Doty, a plant microbiologist at the University of Washington, showed that entire communities of beneficial bacteria exist within plants and allow species like poplar and willow trees to grow tall and strong in rocky and otherwise nutrient-poor conditions. In her study, Doty was even able to transfer these nitrogen-fixing microbes to another plant — rice, in this case — which let the crop grow taller, with a fuller root system.

Indigo Agriculture

“Just as the human microbiome is important for our health, so too the plant microbiome is necessary for plant health, but perhaps more so,” Doty wrote in her book, Functional Importance of the Plant Endophytic Microbiome. “Since plants cannot move, they face more challenges in acquiring sufficient nutrients from a given site, defending against herbivores and pathogens, and tolerating abiotic stresses including drought, salinity, and pollutants. The plant microbiome may help plants overcome these challenges.”

Building on this knowledge, the folks at Indigo have sequenced the genes of tens of thousands of plant-based microbes: the largest database of plant microbe that exists today. With this data, they use machine learning algorithms to predict the microbial strains that have the greatest impact on important crops like cotton, corn, rice, and wheat.  The hope is that Indigo can restore — and even boost — the microbial environment to help these crops perform better out in the field.

“The real impact will come from combining this tool with other technologies we have that are rapidly evolving in the plant breeding space.”

“All in all, with machine learning, we can precisely identify microbes, map their functional capabilities, understand the communities they live in, and unite this information with laboratory and field data to rapidly develop and target new microbial products,” Moores said.

Ultimately, Indigo provide a microbial coating that’s applied to seeds before they are planted in the ground. And while there are other companies looking into beneficial bacteria for plants, they’re primarily focused on those found in the soil, while Indigo investigates those inside plants.

Indigo’s approach shows huge potential for agriculture and its funding rounds have reeled in over $400 million as a result. But there are plenty of question marks behind the company’s research. Indigo may be able to identify what microbes are present in plants, and they may even be able to pick out which ones are beneficial, but determining their role and the most effective combinations will prove challenging. It’s one thing to know which bacteria are present, and another thing entirely to know what they do and why.

For his part, Bais remains cautious but intrigued. “There are a lot of open-ended and unanswered questions that we have no clue about” he says. Not that these questions can’t be answered, but that it will take a lot of trial and error to do so. As Bais explains, scientists will have to “take a bug, take a plant, and see what the bacteria is doing to that plant. Then take the same bug and take multiple plants and see whether that can be translated to multiple plants.”

But as the science behind the plant microbiome progresses, Indigo has positioned itself to be a top contender, if not ahead of the game.

“The scientific community is still early in its study of the plant microbiome, particularly as compared to fields such as plant pathology and soil science,” Moores says. “That being said, our emerging understanding of the role that microbes play in humans has sparked a revolution in healthcare. We believe that we’re on the forefront of a similar revolution in agriculture. There is a tremendous opportunity here.”

Dyllan Furness
Former Digital Trends Contributor
Dyllan Furness is a freelance writer from Florida. He covers strange science and emerging tech for Digital Trends, focusing…
Juiced Bikes offers 20% off on all e-bikes amid signs of bankruptcy
Juiced Bikes Scrambler ebike

A “20% off sitewide” banner on top of a company’s website should normally be cause for glee among customers. Except if you’re a fan of that company’s products and its executives remain silent amid mounting signs that said company might be on the brink of bankruptcy.That’s what’s happening with Juiced Bikes, the San Diego-based maker of e-bikes.According to numerous customer reports, Juiced Bikes has completely stopped responding to customer inquiries for some time, while its website is out of stock on all products. There are also numerous testimonies of layoffs at the company.Even more worrying signs are also piling up: The company’s assets, including its existing inventory of products, is appearing as listed for sale on an auction website used by companies that go out of business.In addition, a court case has been filed in New York against parent company Juiced Inc. and Juiced Bike founder Tora Harris, according to Trellis, a state trial court legal research platform.Founded in 2009 by Harris, a U.S. high-jump Olympian, Juiced Bikes was one of the early pioneers of the direct-to-consumer e-bike brands in the U.S. market.The company’s e-bikes developed a loyal fandom through the years. Last year, Digital Trends named the Juiced Bikes Scorpion X2 as the best moped-style e-bike for 2023, citing its versatility, rich feature set, and performance.The company has so far stayed silent amid all the reports. But should its bankruptcy be confirmed, it could legitimately be attributed to the post-pandemic whiplash experienced by the e-bike industry over the past few years. The Covid-19 pandemic had led to a huge spike in demand for e-bikes just as supply chains became heavily constrained. This led to a ramp-up of e-bike production to match the high demand. But when consumer demand dropped after the pandemic, e-bike makers were left with large stock surpluses.The good news is that the downturn phase might soon be over just as the industry is experiencing a wave of mergers and acquisitions, according to a report by Houlihan Lokey.This may mean that even if Juiced Bikes is indeed going under, the brand and its products might find a buyer and show up again on streets and trails.

Read more
Volkswagen plans 8 new affordable EVs by 2027, report says
volkswagen affordable evs 2027 id 2all

Back in the early 1970s, when soaring oil prices stifled consumer demand for gas-powered vehicles, Volkswagen took a bet on a battery system that would power its first-ever electric concept vehicle, the Elektro Bus.
Now that the German automaker is facing a huge slump in sales in Europe and China, it’s again turning to affordable electric vehicles to save the day.Volkswagen brand chief Thomas Schaefer told German media that the company plans to bring eight new affordable EVs to market by 2027."We have to produce our vehicles profitably and put them on the road at affordable prices," he is quoted as saying.
One of the models will be the ID.2all hatchback, the development of which is currently being expedited to 36 months from its previous 50-month schedule. Last year, VW unveiled the ID.2all concept, promising to give it a price tag of under 25,000 euros ($27,000) for its planned release in 2025.VW CEO Larry Blume has also hinted at a sub-$22,000 EV to be released after 2025.It’s unclear which models would reach U.S. shores. Last year, VW America said it planned to release an under-$35,000 EV in the U.S. by 2027.The price of batteries is one of the main hurdles to reduced EV’s production costs and lower sale prices. VW is developing its own unified battery cell in several European plants, as well as one plant in Ontario, Canada.But in order for would-be U.S. buyers to obtain the Inflation Reduction Act's $7,500 tax credit on the purchase of an EV, the vehicle and its components, including the battery, must be produced at least in part domestically.VW already has a plant in Chattanooga, Tennesse, and is planning a new plant in South Carolina. But it’s unclear whether its new unified battery cells would be built or assembled there.

Read more
Nissan launches charging network, gives Ariya access to Tesla SuperChargers
nissan charging ariya superchargers at station

Nissan just launched a charging network that gives owners of its EVs access to 90,000 charging stations on the Electrify America, Shell Recharge, ChargePoint and EVgo networks, all via the MyNissan app.It doesn’t stop there: Later this year, Nissan Ariya vehicles will be getting a North American Charging Standard (NACS) adapter, also known as the Tesla plug. And in 2025, Nissan will be offering electric vehicles (EVs) with a NACS port, giving access to Tesla’s SuperCharger network in the U.S. and Canada.Starting in November, Nissan EV drivers can use their MyNissan app to find charging stations, see charger availability in real time, and pay for charging with a payment method set up in the app.The Nissan Leaf, however, won’t have access to the functionality since the EV’s charging connector is not compatible. Leaf owners can still find charging stations through the NissanConnectEV and Services app.Meanwhile, the Nissan Ariya, and most EVs sold in the U.S., have a Combined Charging System Combo 1 (CCS1) port, which allows access to the Tesla SuperCharger network via an adapter.Nissan is joining the ever-growing list of automakers to adopt NACS. With adapters, EVs made by General Motors, Ford, Rivian, Honda and Volvo can already access the SuperCharger network. Kia, Hyundai, Toyota, BMW, Volkswagen, and Jaguar have also signed agreements to allow access in 2025.
Nissan has not revealed whether the adapter for the Ariya will be free or come at a cost. Some companies, such as Ford, Rivian and Kia, have provided adapters for free.
With its new Nissan Energy Charge Network and access to NACS, Nissan is pretty much covering all the bases for its EV drivers in need of charging up. ChargePoint has the largest EV charging network in the U.S., with over 38,500 stations and 70,000 charging ports at the end of July. Tesla's charging network is the second largest, though not all of its charging stations are part of the SuperCharger network.

Read more