Skip to main content

Robots can peer pressure kids, but don’t think for a second that we’re immune

robots peer pressure study
University of Plymouth

To slightly modify the title of a well-known TV show: Kids do the darndest things. Recently, researchers from Germany and the U.K. carried out a study, published in the journal Science Robotics, that demonstrated the extent to which kids are susceptible to robot peer pressure. TLDR version: the answer to that old parental question: “If all your friends told you to jump off a cliff, would you?” may well be “Sure. If all my friends were robots.”

The test reenacted a famous 1951 experiment pioneered by the Polish psychologist Solomon Asch. The experiment demonstrated how people can be influenced by the pressures of groupthink, even when this flies in the face of information they know to be correct. In Asch’s experiments, a group of college students were gathered together and shown two cards. The card on the left displayed an image of a single vertical line. The card on the right displayed three lines of varying lengths. The experimenter then asked the participants which line on the right card matched the length of the line shown on the left card.

Recommended Videos

“The special thing about that age range of kids is that they’re still at an age where they’ll suspend disbelief.”

So far, so straightforward. Where things got more devious, however, was in the makeup of the group. Only one person out of the group was a genuine participant, while the others were all actors, who had been told what to say ahead of time. The experiment was to test whether the real participant would go along with the rest of the group when they unanimously gave the wrong answer. As it turned out, most would. Peer pressure means that the majority of people will deny information that is clearly correct if it means conforming to the majority opinion.

In the 2018 remix of the experiment, the same principle was used — only instead of a group of college age peers, the “real participant” was a child, aged seven to nine years old. The “actors” were played by three robots, programmed to give the wrong answer. In a sample of 43 volunteers, 74 percent of kids gave the same incorrect answer as the robots. The results suggest that most kids of this age will treat pressure from robots the same as peer pressure from their flesh-and-blood peers.

In the experiment, participants were presented with a group of lines and asked to pick the one with the greatest length. The robotic participants would then unanimously give an incorrect answer in an attempt to influence the answer of the human participant. Anna-Lisa Vollmer, Robin Read, Dries Trippas, and Tony Belpaeme

“The special thing about that age range of kids is that they’re still at an age where they’ll suspend disbelief,” Tony Belpaeme, Professor in Intelligent and Autonomous Control Systems, who helped carry out the study, told Digital Trends. “They will play with toys and still believe that their action figures or dolls are real; they’ll still look at a puppet show and really believe what’s happening; they may still believe in [Santa Claus]. It’s the same thing when they look at a robot: they don’t see electronics and plastic, but rather a social character.”

Interestingly, the experiment contrasted this with the response from adults. Unlike the kids, adults weren’t swayed by the robots’ errors. “When an adult saw the robot giving the wrong answer, they gave it a puzzled look and then gave the correct answer,” Belpaeme continued.

So nothing to worry about then? So long as we stop children getting their hands on robots programmed to give bad responses, everything should be fine, right? Don’t be so fast.

Are adults really so much smarter?

As Belpaeme acknowledged, this task was designed to be so simple that there was no uncertainty as to what the answer might be. The real world is different. When we think about the kinds of jobs readily handed over to machines, these are frequently tasks that we are not, as humans, always able to perform perfectly.

This task was designed to be so simple that there was no uncertainty as to what the answer might be.

It could be that the task is incredibly simple, but that the machine can perform it significantly faster than we can. Or it could be a more complex task, in which the computer has access to far greater amounts of data than we do. Depending on the potential impact of the job at hand, it is no surprise that many of us would be unhappy about correcting a machine.

Would a nurse in a hospital be happy about overruling the FDA-approved algorithm which can help make prioritizations about patient health by monitoring vital signs and then sending alerts to medical staff? Or would a driver be comfortable taking the wheel from a driverless car when dealing with a particularly complex road scenario? Or even a pilot overriding the autopilot because they think the wrong decision is being made? In all of these cases, we would like to think the answer is “yes.” For all sorts of reasons, though, that may not be reality.

Nicholas Carr writes about this in his 2014 book The Glass Cage: Where Automation is Taking Us. The way he describes it underlines the kind of ambiguity that real life cases of automation involve, where the problems are far more complex than the length of a line on a card, the machines are much smarter, and the outcome is potentially more crucial.

nicholas carr
Nicholas Carr is a Pulitzer Prize-winning author, best known for his books “The Shallows: What the Internet is Doing to Our Brains” and “The Glass Cage: How Our Computers are Changing Us” Image used with permission by copyright holder

“How do you measure the expense of an erosion of effort and engagement, or a waning of agency and autonomy, or a subtle deterioration of skill? You can’t,” he writes. “These are the kinds of shadowy, intangible things that we rarely appreciate until after they’re gone, and even then we may have trouble expressing the losses in concrete terms.”

“These are the kinds of shadowy, intangible things that we rarely appreciate until after they’re gone.”

Social robots of the sort that Belpaeme theorizes about in the research paper are not yet mainstream, but already there are illustrations of some of these conundrums in action. For example, Carr opens his book with mention of a Federal Aviation Administration memo which noted how pilots should spend less time flying on autopilot because of the risks this posed. This was based on analysis of crash data, showing that pilots frequently rely too heavily on computerized systems.

A similar case involved a 2009 lawsuit in which a woman named Lauren Rosenberg filed a suit against Google after being advised to walk along a route that headed into dangerous traffic. Although the case was thrown out of court, it shows that people will override their own common sense in the belief that machine intelligence has more intelligence than we do.

For every ship there’s a shipwreck

Ultimately, as Belpaeme acknowledges, the issue is that sometimes we want to hand over decision making to machines. Robots promise to do the jobs that are dull, dirty, and dangerous — and if we have to second-guess every decision, they’re not really the labor-saving devices that have been promised. If we’re going to eventually invite robots into our home, we will want them to be able to act autonomously, and that’s going to involve a certain level of trust.

“Robots exerting social pressure on you can be a good thing; it doesn’t have to be sinister,” Belpaeme continued. “If you have robots used in healthcare or education, you want them to be able to influence you. For example, if you want to lose weight you could be given a weight loss robot for two months which monitors your calorie intake and encourages you to take more exercise. You want a robot like that to be persuasive and influence you. But any technology which can be used for good can also be used for evil.”

What’s the answer to this? Questions such as this will be debated on a case-by-case basis. If the bad ultimately outweighs the good, technology like social robots will never take off. But it’s important that we take the right lessons from studies like the one about robot-induced peer pressure. And it’s not the fact that we’re so much smarter than kids.

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Juiced Bikes offers 20% off on all e-bikes amid signs of bankruptcy
Juiced Bikes Scrambler ebike

A “20% off sitewide” banner on top of a company’s website should normally be cause for glee among customers. Except if you’re a fan of that company’s products and its executives remain silent amid mounting signs that said company might be on the brink of bankruptcy.That’s what’s happening with Juiced Bikes, the San Diego-based maker of e-bikes.According to numerous customer reports, Juiced Bikes has completely stopped responding to customer inquiries for some time, while its website is out of stock on all products. There are also numerous testimonies of layoffs at the company.Even more worrying signs are also piling up: The company’s assets, including its existing inventory of products, is appearing as listed for sale on an auction website used by companies that go out of business.In addition, a court case has been filed in New York against parent company Juiced Inc. and Juiced Bike founder Tora Harris, according to Trellis, a state trial court legal research platform.Founded in 2009 by Harris, a U.S. high-jump Olympian, Juiced Bikes was one of the early pioneers of the direct-to-consumer e-bike brands in the U.S. market.The company’s e-bikes developed a loyal fandom through the years. Last year, Digital Trends named the Juiced Bikes Scorpion X2 as the best moped-style e-bike for 2023, citing its versatility, rich feature set, and performance.The company has so far stayed silent amid all the reports. But should its bankruptcy be confirmed, it could legitimately be attributed to the post-pandemic whiplash experienced by the e-bike industry over the past few years. The Covid-19 pandemic had led to a huge spike in demand for e-bikes just as supply chains became heavily constrained. This led to a ramp-up of e-bike production to match the high demand. But when consumer demand dropped after the pandemic, e-bike makers were left with large stock surpluses.The good news is that the downturn phase might soon be over just as the industry is experiencing a wave of mergers and acquisitions, according to a report by Houlihan Lokey.This may mean that even if Juiced Bikes is indeed going under, the brand and its products might find a buyer and show up again on streets and trails.

Read more
Volkswagen plans 8 new affordable EVs by 2027, report says
volkswagen affordable evs 2027 id 2all

Back in the early 1970s, when soaring oil prices stifled consumer demand for gas-powered vehicles, Volkswagen took a bet on a battery system that would power its first-ever electric concept vehicle, the Elektro Bus.
Now that the German automaker is facing a huge slump in sales in Europe and China, it’s again turning to affordable electric vehicles to save the day.Volkswagen brand chief Thomas Schaefer told German media that the company plans to bring eight new affordable EVs to market by 2027."We have to produce our vehicles profitably and put them on the road at affordable prices," he is quoted as saying.
One of the models will be the ID.2all hatchback, the development of which is currently being expedited to 36 months from its previous 50-month schedule. Last year, VW unveiled the ID.2all concept, promising to give it a price tag of under 25,000 euros ($27,000) for its planned release in 2025.VW CEO Larry Blume has also hinted at a sub-$22,000 EV to be released after 2025.It’s unclear which models would reach U.S. shores. Last year, VW America said it planned to release an under-$35,000 EV in the U.S. by 2027.The price of batteries is one of the main hurdles to reduced EV’s production costs and lower sale prices. VW is developing its own unified battery cell in several European plants, as well as one plant in Ontario, Canada.But in order for would-be U.S. buyers to obtain the Inflation Reduction Act's $7,500 tax credit on the purchase of an EV, the vehicle and its components, including the battery, must be produced at least in part domestically.VW already has a plant in Chattanooga, Tennesse, and is planning a new plant in South Carolina. But it’s unclear whether its new unified battery cells would be built or assembled there.

Read more
Nissan launches charging network, gives Ariya access to Tesla SuperChargers
nissan charging ariya superchargers at station

Nissan just launched a charging network that gives owners of its EVs access to 90,000 charging stations on the Electrify America, Shell Recharge, ChargePoint and EVgo networks, all via the MyNissan app.It doesn’t stop there: Later this year, Nissan Ariya vehicles will be getting a North American Charging Standard (NACS) adapter, also known as the Tesla plug. And in 2025, Nissan will be offering electric vehicles (EVs) with a NACS port, giving access to Tesla’s SuperCharger network in the U.S. and Canada.Starting in November, Nissan EV drivers can use their MyNissan app to find charging stations, see charger availability in real time, and pay for charging with a payment method set up in the app.The Nissan Leaf, however, won’t have access to the functionality since the EV’s charging connector is not compatible. Leaf owners can still find charging stations through the NissanConnectEV and Services app.Meanwhile, the Nissan Ariya, and most EVs sold in the U.S., have a Combined Charging System Combo 1 (CCS1) port, which allows access to the Tesla SuperCharger network via an adapter.Nissan is joining the ever-growing list of automakers to adopt NACS. With adapters, EVs made by General Motors, Ford, Rivian, Honda and Volvo can already access the SuperCharger network. Kia, Hyundai, Toyota, BMW, Volkswagen, and Jaguar have also signed agreements to allow access in 2025.
Nissan has not revealed whether the adapter for the Ariya will be free or come at a cost. Some companies, such as Ford, Rivian and Kia, have provided adapters for free.
With its new Nissan Energy Charge Network and access to NACS, Nissan is pretty much covering all the bases for its EV drivers in need of charging up. ChargePoint has the largest EV charging network in the U.S., with over 38,500 stations and 70,000 charging ports at the end of July. Tesla's charging network is the second largest, though not all of its charging stations are part of the SuperCharger network.

Read more