Skip to main content

Digital Trends may earn a commission when you buy through links on our site. Why trust us?

Caretaker bots and starfish assassins: Meet the tech that protects Earth’s reefs

Tech For Change
This story is part of Tech for Change: an ongoing series in which we shine a spotlight on positive uses of technology, and showcase how they're helping to make the world a better place.

Coral reefs are dying everywhere. As the home of the most diverse ecosystems on Earth, that’s bad news. Coral reefs protect our coastlines from waves and tropical storms, while also sheltering huge numbers of marine organisms. Their decline is the result of predominantly human actions such as pollution, overfishing, coral mining and, of course, the coral-bleaching effects of climate change.

Recommended Videos

Can technology help mitigate or even reverse this tragic trend? Here are six examples of cutting-edge tech that might assist with exactly that.

Robots vs. coral predators

RangerBot: The Robo Reef Protector

Starfish may look cute and harmless, but certain types are surprisingly problematic when it comes to coral reefs. Crown-of-thorns starfish prey on coral, secreting digestive enzymes to absorb their nutrients. One such starfish can consume an astonishing 65 square feet of living coral reef every single year.

To stop them, researchers from Australia’s Queensland University of Technology, Google, and the Great Barrier Reef Foundation have developed an underwater drone called RangerBot. It’s able to navigate autonomously underwater, identify starfish with 99.4% accuracy, and then dispatch them by initiating a fatal injection. The drone can also be used for monitoring coral bleaching, water quality, and pollution, along with mapping out large underwater areas.

“We believe it will be a very valuable tool for reefs around the world,” Professor Matthew Dunbabin, a lead researcher on the project, previously told Digital Trends. “Having an easy-to-use, small underwater robot that can operate in coral reef environments fills a current technology gap to allow larger-scale monitoring and management of reefs globally. We believe this is a first step in the development of a range of visual-guided robotic systems for environmental monitoring.”

Using robots to repopulate coral reefs

QUT's LarvalBot makes first delivery of coral babies

Robots can be used for protecting coral reefs from would-be predators, but they could also be useful for helping reseed them with coral babies. This tiny coral spawn is collected in its hundreds of millions in places like the Great Barrier Reef. It is then reared into baby corals in bespoke floating enclosures, before a robot called LarvalBot delivers them to the reef to ensure the survival and thriving of coral reefs in the future. Think of it as underwater crop dusting — only with a robot controlled via iPad instead of a plane.

The robot, developed by researchers at the Queensland University of Technology, can carry enormous amounts of these baby corals. Two or three robots can carry a combined 1.4 million larvae. They can then disperse them over an area of 1,500 square meters per hour for each robot.

“We need to intervene to increase the efficiency of restoring coral communities because many of these impacted reefs now have too few adult spawning corals left alive to recover naturally,” Professor Peter Harrison, director at the Marine Ecology Research Center, who is working on the project, told Digital Trends. “By efficiently capturing coral spawn, we can maximize fertilization of the eggs by sperm and then rear millions of larvae that are then delivered to damaged reef sections using LarvalBot, so this project is an exciting combination of ecology and technology.”

NASA gamifies coral mapping

Can NASA and video games help save Earth’s coral reefs? A new project by the famed space agency seeks to find out. For the past several years, NASA has been building tools for 3D imaging coral ecosystems from the air, via a special fluid lensing system with the NASA FluidCam, attached to drones or aircraft. However, while plenty of data has been collected, the coral images still need to be properly classified before they can be used for research.

“The ultimate goal of the project is to produce the highest resolution habitat map of coral reefs around the world and help us understand the current and past status of coral reefs and shallow marine systems, in general, to better protect them into the future,” Ved Chirayath, the principal investigator involved with the project, told Digital Trends.

The initiative does not directly seek to make changes in the ecosystem like some of the others on this list. Instead, it aims to use game data to classify and assess the health of global coral reefs. The idea is that players of the game — available for both iOS and Mac — learn how to identify coral and then mark it with a brush within the game. This information is then transmitted back to NASA’s servers to help its A.I. figure out how to identify coral on its own. In part, this documenting of coral reefs around the world will make it possible to initiate more targeted interventions where required.

Reseeding reefs with … concrete pods?

Image used with permission by copyright holder

As a more efficient alternative to coral transplants, whereby grown coral is moved to other imperiled reef communities, a project by marine ecology group Secore International uses concrete pods for reseeding reefs. These small, spiky, tetrapod-shaped concrete structures, which can be seeded with coral larvae, can then be wedged into reef crevices by divers. Unlike coral transplants, this can be done in large numbers in a very short space of time. It results in a cost reduction of up to 18-fold. Researchers have been exploring the technology since 2014, mainly focused on smaller areas.

“We are … testing this technique on a range of reef habitat types, and with a range of different coral species,” Valérie Chamberland, a research scientist at Secore International based on Curacao, previously told Digital Trends. “On Curacao, we have implemented about 12 pilot sites around the island — including reefs ranging from a healthy to a degraded state — where coral offspring of a total of seven species have been outplanted using the sowing technique. While the success of this new technique varies depending on the coral species and on the environmental quality of the restoration site, the results are promising.”

Electroshock therapy for reefs

Biorock Electric Reefs grow back severely eroded beaches in months

To restore coral to its majestic glory in Granada, scientists are employing Biorock to quite literally shock coral into action. Well, kind of. Biorock reefs use an electrically conductive frame that is secured to the seabed. A low current (so low it won’t hurt any life in the vicinity) is then passed through the water. This creates an electrolytic reaction, which causes calcium carbonate to form on the reef surface. Coral fragments are then transplanted, which flourish as a result of the natural mineral crystals. The corals thrive on these substrates, where they can hit growth rates five times faster than they would normally. Today, there are dozens of Biorock Electric Reef projects taking place around the world.

3D-printed coral reefs

Shortage of actual healthy coral? Researchers from Cambridge University and the University of California San Diego recently 3D-printed coral-inspired structures that are able to grow dense populations of tiny, microscopic algae. Corals and algae enjoy a symbiotic relationship, whereby the coral hosts the algae, and the algae provide sugars to the coral via photosynthesis. The printed coral matches the natural coral structures and its light-harvesting abilities. This creates an artificial host microenvironment that could one day be used to help plug gaps in real coral reefs.

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Juiced Bikes offers 20% off on all e-bikes amid signs of bankruptcy
Juiced Bikes Scrambler ebike

A “20% off sitewide” banner on top of a company’s website should normally be cause for glee among customers. Except if you’re a fan of that company’s products and its executives remain silent amid mounting signs that said company might be on the brink of bankruptcy.That’s what’s happening with Juiced Bikes, the San Diego-based maker of e-bikes.According to numerous customer reports, Juiced Bikes has completely stopped responding to customer inquiries for some time, while its website is out of stock on all products. There are also numerous testimonies of layoffs at the company.Even more worrying signs are also piling up: The company’s assets, including its existing inventory of products, is appearing as listed for sale on an auction website used by companies that go out of business.In addition, a court case has been filed in New York against parent company Juiced Inc. and Juiced Bike founder Tora Harris, according to Trellis, a state trial court legal research platform.Founded in 2009 by Harris, a U.S. high-jump Olympian, Juiced Bikes was one of the early pioneers of the direct-to-consumer e-bike brands in the U.S. market.The company’s e-bikes developed a loyal fandom through the years. Last year, Digital Trends named the Juiced Bikes Scorpion X2 as the best moped-style e-bike for 2023, citing its versatility, rich feature set, and performance.The company has so far stayed silent amid all the reports. But should its bankruptcy be confirmed, it could legitimately be attributed to the post-pandemic whiplash experienced by the e-bike industry over the past few years. The Covid-19 pandemic had led to a huge spike in demand for e-bikes just as supply chains became heavily constrained. This led to a ramp-up of e-bike production to match the high demand. But when consumer demand dropped after the pandemic, e-bike makers were left with large stock surpluses.The good news is that the downturn phase might soon be over just as the industry is experiencing a wave of mergers and acquisitions, according to a report by Houlihan Lokey.This may mean that even if Juiced Bikes is indeed going under, the brand and its products might find a buyer and show up again on streets and trails.

Read more
Volkswagen plans 8 new affordable EVs by 2027, report says
volkswagen affordable evs 2027 id 2all

Back in the early 1970s, when soaring oil prices stifled consumer demand for gas-powered vehicles, Volkswagen took a bet on a battery system that would power its first-ever electric concept vehicle, the Elektro Bus.
Now that the German automaker is facing a huge slump in sales in Europe and China, it’s again turning to affordable electric vehicles to save the day.Volkswagen brand chief Thomas Schaefer told German media that the company plans to bring eight new affordable EVs to market by 2027."We have to produce our vehicles profitably and put them on the road at affordable prices," he is quoted as saying.
One of the models will be the ID.2all hatchback, the development of which is currently being expedited to 36 months from its previous 50-month schedule. Last year, VW unveiled the ID.2all concept, promising to give it a price tag of under 25,000 euros ($27,000) for its planned release in 2025.VW CEO Larry Blume has also hinted at a sub-$22,000 EV to be released after 2025.It’s unclear which models would reach U.S. shores. Last year, VW America said it planned to release an under-$35,000 EV in the U.S. by 2027.The price of batteries is one of the main hurdles to reduced EV’s production costs and lower sale prices. VW is developing its own unified battery cell in several European plants, as well as one plant in Ontario, Canada.But in order for would-be U.S. buyers to obtain the Inflation Reduction Act's $7,500 tax credit on the purchase of an EV, the vehicle and its components, including the battery, must be produced at least in part domestically.VW already has a plant in Chattanooga, Tennesse, and is planning a new plant in South Carolina. But it’s unclear whether its new unified battery cells would be built or assembled there.

Read more
Nissan launches charging network, gives Ariya access to Tesla SuperChargers
nissan charging ariya superchargers at station

Nissan just launched a charging network that gives owners of its EVs access to 90,000 charging stations on the Electrify America, Shell Recharge, ChargePoint and EVgo networks, all via the MyNissan app.It doesn’t stop there: Later this year, Nissan Ariya vehicles will be getting a North American Charging Standard (NACS) adapter, also known as the Tesla plug. And in 2025, Nissan will be offering electric vehicles (EVs) with a NACS port, giving access to Tesla’s SuperCharger network in the U.S. and Canada.Starting in November, Nissan EV drivers can use their MyNissan app to find charging stations, see charger availability in real time, and pay for charging with a payment method set up in the app.The Nissan Leaf, however, won’t have access to the functionality since the EV’s charging connector is not compatible. Leaf owners can still find charging stations through the NissanConnectEV and Services app.Meanwhile, the Nissan Ariya, and most EVs sold in the U.S., have a Combined Charging System Combo 1 (CCS1) port, which allows access to the Tesla SuperCharger network via an adapter.Nissan is joining the ever-growing list of automakers to adopt NACS. With adapters, EVs made by General Motors, Ford, Rivian, Honda and Volvo can already access the SuperCharger network. Kia, Hyundai, Toyota, BMW, Volkswagen, and Jaguar have also signed agreements to allow access in 2025.
Nissan has not revealed whether the adapter for the Ariya will be free or come at a cost. Some companies, such as Ford, Rivian and Kia, have provided adapters for free.
With its new Nissan Energy Charge Network and access to NACS, Nissan is pretty much covering all the bases for its EV drivers in need of charging up. ChargePoint has the largest EV charging network in the U.S., with over 38,500 stations and 70,000 charging ports at the end of July. Tesla's charging network is the second largest, though not all of its charging stations are part of the SuperCharger network.

Read more