Skip to main content

Swarmbot invasion: How small robots will solve major problems

Image used with permission by copyright holder

They’ve been among us for a while now. Tiny microbots that work together to fight disease, find a lost soldier, or even build a new structure have appeared in science fiction movies like Minority Report in the past. And, several companies, including IBM and HP, have shown how a few small robots can communicate with each other to complete a task.

Now, Harvard researchers have developed the kilobot, a tiny robot that costs just $14 to build and communicates using infrared. The main distinction: hundreds or even thousands of kilobots could perform complex tasks. In the future, these bots could set the stage for rapid prototyping assembly. Imagine thousands of kilobots building a bridge or even a skyscraper, or entering a warzone to find enemy installations and disable weapons one by one.

Mike Rubenstein is a postdoctoral fellow working in the Self-Organizing Systems Research Group at Harvard University. He explained that the tiny bots use two vibrating motor for locomotion, and communicate with other bots by sending an infrared light onto a surface — they know the location of other bots by reading the light intensity.

Swarmbots groupThe main difference, he says, between some previous swarmbots and the kilobit, is that the new bots are genuine robots: They work together, but do not just follow a pre-determined route. They are more like a Roomba than an RC car that just follows the commands of an operator. With the Roomba, the bot has enough intelligence to monitor the environment looking for obstructions and using thousands of algorithms to find an optimal route.

“The main short-term application is for testing swarm algorithms on a large-scale robot system,” says Rubenstein. “We can program them to move and interact with neighboring robots. There are many behaviors possible, so far we have worked on foraging and exploration.”

Rubenstein says he can imagine a future scenario where the bots are used for military engagements. The team has already developed a roadmap, called Termes, for how kilobots could build a 3D structure. The team is working on a large-scale deployment for kilobots. Rubenstein also envisions the bots being used for education, what he calls “group vehicle navigation” and for environmental mapping — a technique that approximates what a region would look like after corrosion or after the effects of climate change.

Medical scenarios

Another example of massive swarmbot interaction involves so-called “ninja particles” that IBM is developing. These tiny polymer bots work like a cell in your body — they contain an electrical charge, and are attracted to infectious agents in the body like a magnet. Doctors could use ninja particles that work autonomously in the body to find a wound and start repairing damaged cells.

“Once these polymers come into contact with water in or on the body, they self-assemble into a nanostructure that is designed to target bacteria membranes based on electrostatic interaction and break through their cell membranes and walls. The physical nature of this action prevents bacteria from developing resistance to these nanoparticles,” says Jim Hedrick, a researcher at IBM.

“These agents prevent the bacteria from developing drug resistance by actually breaking through the bacterial cell wall and membrane, a fundamentally different mode of attack compared to traditional antibiotics,” Hedrick says. The swarm concept, similar to what Rubenstein is developing, means each individual polymer can’t accomplish the mission on its own but has to work with the other agents to fight an infection and alter cells in the body.

Interestingly, Hedrick says ninja particles could be used for commercial applications as well, not just in the medical field or in a research lab. He says the nanostructures could be built-in to hand-soap, deodorant, table wipes, and hand sanitizers to fight infections. They could also be used to fight major infections like tuberculosis and lung disease. Once the particles are programmed, they carry out their “mission” and then naturally dissolve.

Future scenarios

Rubenstein was hesitant to theorize about future kilobot scenarios. Yet, it’s easy to envision how swarmbots could become part of our everyday lives. Whether having thousands of bots building bridges, finding infections, or fighting our battles could lead to a microarmageddon is another question. Yet, the idea of sensors in physical objects is already a reality.

One example is the 94Fifty basketball, which sells for about $3,000. The ball contains a sensor that communicates with software to analyze a player’s shot. The software can be used to train new players on shooting mechanics, and the data can be used for an entire team to analyze how they play the game and how to improve their abilities. This “hive” analysis, already a reality, shows how embedded sensors can work together in a team.

Swarmbots use a similar concept: They could be embedded in physical objects, communicate with each other, and then report their activities back to a central server.

Thats particularly interesting in a battleground scenario. Swarmbots could work like the new iRobot 110 FirstLook, a rapid deployment bot you throw to the ground.

The bot can handle a 15-foot drop and is waterproof up to 3 feet. While not microbot size (each FirstLook is about ten inches long and weighs five pounds) they could work in a hive, similar to how programmers have designed a swarm of iRobot Roomba vacuums to clean large areas. We recently watched two Roombas work together to vacuum a room, avoiding each other and communicating to finish the cleaning job in half the time.

FirstLook bots already use infrared light to find routes in a battlefield. Even though they do not work autonomously and do not communicate with each other yet, it’s easy to envision how these kinds of bots could coordinate an exploratory mission in enemy territory.

Swarmbot drones could perform surveillance tasks as seen in the upcoming Ghost Recon: Future Soldier game by Ubisoft, providing reconnaissance that keeps soldiers safe. Of course, these future scenarios may seem like science-fiction. There are questions about the cost for each bot on the battlefield, and military officials have been reticent to use robots in combat situations because of the moral implications (humans have the ability to make better impulse decisions). Military bots are used primarily for surveying the battlefield today.

However, as with any robotics endeavor, that will change as the AI improves. Swarmbots could be programmed with a group failsafe that is stronger than an individual bot. They could be sent into a warzone to find wounded soldiers, repair vehicles, and even disable enemy weapons.

For now, swarmbot technology is firmly in an early development stage. The kilobot is the best example so far that demonstrates how a low-cost bot could perform simple tasks and work together in a horde. Whether this leads to a swarm of bots that can mow your grass, repair a fence, or build a tree fort in your backyard is still an unknown.

John Brandon
Former Digital Trends Contributor
Juiced Bikes offers 20% off on all e-bikes amid signs of bankruptcy
Juiced Bikes Scrambler ebike

A “20% off sitewide” banner on top of a company’s website should normally be cause for glee among customers. Except if you’re a fan of that company’s products and its executives remain silent amid mounting signs that said company might be on the brink of bankruptcy.That’s what’s happening with Juiced Bikes, the San Diego-based maker of e-bikes.According to numerous customer reports, Juiced Bikes has completely stopped responding to customer inquiries for some time, while its website is out of stock on all products. There are also numerous testimonies of layoffs at the company.Even more worrying signs are also piling up: The company’s assets, including its existing inventory of products, is appearing as listed for sale on an auction website used by companies that go out of business.In addition, a court case has been filed in New York against parent company Juiced Inc. and Juiced Bike founder Tora Harris, according to Trellis, a state trial court legal research platform.Founded in 2009 by Harris, a U.S. high-jump Olympian, Juiced Bikes was one of the early pioneers of the direct-to-consumer e-bike brands in the U.S. market.The company’s e-bikes developed a loyal fandom through the years. Last year, Digital Trends named the Juiced Bikes Scorpion X2 as the best moped-style e-bike for 2023, citing its versatility, rich feature set, and performance.The company has so far stayed silent amid all the reports. But should its bankruptcy be confirmed, it could legitimately be attributed to the post-pandemic whiplash experienced by the e-bike industry over the past few years. The Covid-19 pandemic had led to a huge spike in demand for e-bikes just as supply chains became heavily constrained. This led to a ramp-up of e-bike production to match the high demand. But when consumer demand dropped after the pandemic, e-bike makers were left with large stock surpluses.The good news is that the downturn phase might soon be over just as the industry is experiencing a wave of mergers and acquisitions, according to a report by Houlihan Lokey.This may mean that even if Juiced Bikes is indeed going under, the brand and its products might find a buyer and show up again on streets and trails.

Read more
Volkswagen plans 8 new affordable EVs by 2027, report says
volkswagen affordable evs 2027 id 2all

Back in the early 1970s, when soaring oil prices stifled consumer demand for gas-powered vehicles, Volkswagen took a bet on a battery system that would power its first-ever electric concept vehicle, the Elektro Bus.
Now that the German automaker is facing a huge slump in sales in Europe and China, it’s again turning to affordable electric vehicles to save the day.Volkswagen brand chief Thomas Schaefer told German media that the company plans to bring eight new affordable EVs to market by 2027."We have to produce our vehicles profitably and put them on the road at affordable prices," he is quoted as saying.
One of the models will be the ID.2all hatchback, the development of which is currently being expedited to 36 months from its previous 50-month schedule. Last year, VW unveiled the ID.2all concept, promising to give it a price tag of under 25,000 euros ($27,000) for its planned release in 2025.VW CEO Larry Blume has also hinted at a sub-$22,000 EV to be released after 2025.It’s unclear which models would reach U.S. shores. Last year, VW America said it planned to release an under-$35,000 EV in the U.S. by 2027.The price of batteries is one of the main hurdles to reduced EV’s production costs and lower sale prices. VW is developing its own unified battery cell in several European plants, as well as one plant in Ontario, Canada.But in order for would-be U.S. buyers to obtain the Inflation Reduction Act's $7,500 tax credit on the purchase of an EV, the vehicle and its components, including the battery, must be produced at least in part domestically.VW already has a plant in Chattanooga, Tennesse, and is planning a new plant in South Carolina. But it’s unclear whether its new unified battery cells would be built or assembled there.

Read more
Nissan launches charging network, gives Ariya access to Tesla SuperChargers
nissan charging ariya superchargers at station

Nissan just launched a charging network that gives owners of its EVs access to 90,000 charging stations on the Electrify America, Shell Recharge, ChargePoint and EVgo networks, all via the MyNissan app.It doesn’t stop there: Later this year, Nissan Ariya vehicles will be getting a North American Charging Standard (NACS) adapter, also known as the Tesla plug. And in 2025, Nissan will be offering electric vehicles (EVs) with a NACS port, giving access to Tesla’s SuperCharger network in the U.S. and Canada.Starting in November, Nissan EV drivers can use their MyNissan app to find charging stations, see charger availability in real time, and pay for charging with a payment method set up in the app.The Nissan Leaf, however, won’t have access to the functionality since the EV’s charging connector is not compatible. Leaf owners can still find charging stations through the NissanConnectEV and Services app.Meanwhile, the Nissan Ariya, and most EVs sold in the U.S., have a Combined Charging System Combo 1 (CCS1) port, which allows access to the Tesla SuperCharger network via an adapter.Nissan is joining the ever-growing list of automakers to adopt NACS. With adapters, EVs made by General Motors, Ford, Rivian, Honda and Volvo can already access the SuperCharger network. Kia, Hyundai, Toyota, BMW, Volkswagen, and Jaguar have also signed agreements to allow access in 2025.
Nissan has not revealed whether the adapter for the Ariya will be free or come at a cost. Some companies, such as Ford, Rivian and Kia, have provided adapters for free.
With its new Nissan Energy Charge Network and access to NACS, Nissan is pretty much covering all the bases for its EV drivers in need of charging up. ChargePoint has the largest EV charging network in the U.S., with over 38,500 stations and 70,000 charging ports at the end of July. Tesla's charging network is the second largest, though not all of its charging stations are part of the SuperCharger network.

Read more