Skip to main content

Meet the gene-edited bacteria that could make cannabis plants obsolete

Jay Keasling, Professor, Department of Chemical & Biomolecular Engineering at UC Berkeley. National Science Foundation

“Hey, man.”

“Yeah, what?”

“You know how you’ve got craft beer, right?”

“Yeah, I guess.”

“Well, imagine if — imagine if it was possible to brew cannabis like you brew beer.”

“That would be awesome. Someone should totally come up with that.

The above conversation, no doubt set to a background of contemplatively munched pizza and roots reggae, sounds like your typical 1:00am conversation among first year college students. It’s the kind of idea that sounds brilliant in the wee hours of the morning; it’s the kind of idea that, if remembered at all, sounds entirely impossible in the cold light of day.

Yet despite how far-fetched it might sound, someone — or rather a team of someones — has pulled it off. At the University of California, Berkeley, synthetic biologists have managed to engineer brewer’s yeast so that it produces the main cannabinoids found in marijuana: mind-altering THC and the non-psychoactive CBD. Fed only on a diet of sugar, this yeast represents an easy and far cheaper way to produce cannabinoids than is otherwise on offer today.

Brewer's yeast Imperial Yeast/Instagram

“We wanted to produce cannabinoids in a better way,” Jay Keasling, a UC Berkeley professor of chemical and biomolecular engineering and bioengineering, told Digital Trends. “We took the genes out of cannabis that are responsible for making cannabinoids and combined them with genes from other organisms into brewer’s yeast. The entire process is as simple as brewing beer, except rather than having the yeast make ethanol it makes cannabinoids.”

Recommended Videos

Aiming high

We’ll stop short of likening Keasling’s journey from respected educator to drug mastermind to the plight of Breaking Bad’s Walter White. Certainly, it doesn’t involve any of the criminality. But it’s nonetheless a tale of how a brilliant chemist can lend their expertise and unique insights to totally change the way we create what (until far too recently in the case of marijuana) was an illicit high. In short: move over weed connoisseurs, there’s a new sheriff in town!

“This is the kind of work that my lab has been doing for decades,” he said. “A little over 10 years ago, we took the genes out of a plant called wormwood and put them into yeast, and then got that yeast to produce the precursor to an antimalarial drug called artemisinin. Artemisinin is normally extracted from wormwood, and we managed to get yeast to produce it.”

Imperial Yeast / Facebook

This exciting effort was followed by myriad other molecules over the following decade, produced using a similar microbial approach. Then cannabis legalization happened and, with it, a whole new opportunity presented itself.  “When we saw that there was interest in cannabinoids, and that the pathway that is naturally found in cannabis had been elucidated, we started to put it into yeast,” he said. “We were very fortunate to get it to work.”

To understand how significantly different the team’s approach is, it’s necessary to consider how cannabinoids are traditionally produced — and what is wrong with this approach. This process involves physically growing cannabis plants, either in a field or in a greenhouse. Once grown, a process which takes several months, those wanting to extract cannabinoids do so by harvesting buds from the plant.

Image used with permission by copyright holder

Keasling explains that there are several ways in which his team’s new method makes sense as an alternative. For one thing, it’s cheaper and addresses environmental concerns. In California, cannabis cultivation is responsible for an estimated 3% of electricity usage, resulting from the large quantities grown indoors. Other states have experienced a significant increase in electricity demand after legalizing recreational cannabis. In Colorado, half of the load growth on the grid has been attributed to cannabis cultivation. There’s also a huge amount of waste involved. The buds of a cannabis plant are a relatively small part, but the rest of the plant nonetheless needs to be grown and then (more importantly) disposed of by farmers.

“You don’t want to burn it because it harms the atmosphere,” Keasling said. “With fermentation you have much less waste and much less energy use.”

Oh, yes, did we mention the cost? According to Keasling, the yeast cost involved in his team’s microbial approach to growing is around one-tenth the cost of producing cannabinoids in open fields, and an even bigger saving versus growing them indoors. Its biggest saving of all is when compared to the existing process of chemically synthesizing cannabinoids, something that is used to produce certain FDA-approved drugs. “That’s super expensive,” he said. “It costs around $40,000 to $70,000 per kilogram to produce those molecules using chemical synthesis. With yeast fermentation, we can produce them for about $400 per kilogram.”

New blockbuster drugs

Another enormous advantage is the access to pure cannabinoid molecules. “When you grow cannabis, depending on the variety, you get THC predominantly, with a bunch of other cannabinoids in minor levels,” he explained. “Or you get CBD, plus a bunch of other cannabinoids. You then have to purify it. With the yeast, we can produce nearly pure CBD or THC.”

This is potentially invaluable when it comes to the use of cannabis extracts, such as THC, which is used in everything from recreational edibles to medicines able to reduce nausea after chemotherapy or improve appetite in patients with HIV. CBD, meanwhile, is increasingly used in cosmetics (often termed “cosmeceuticals”.) It has also been explored as a possible therapeutic solution for conditions such as Parkinson’s disease and chronic pain.

Josh Edelson/Getty

“There are all these different ways to get cannabinoids,” Keasling said. “You can get CBD oil. You can get edibles. But no-one really knows how much is really in those, outside of their claims. Now we have the possibility of getting exact doses of molecules of interest. There’s no more guesswork involved. And you won’t have to worry about contamination of other molecules.”

The yeast-based approach opens up the possibility of studying these lesser-known marijuana components.

Things go beyond THC and CBD, too. There are more than 100 other chemicals in marijuana. However, extracting them for study has proven difficult because they are produced in such tiny quantities. The yeast-based approach opens up the possibility of studying these lesser-known marijuana components.

“With this platform, you take the synth base which makes the particular cannabinoid that you want and you graft it into the yeast that produces the precursor to those cannabinoids,” he said. “You can then produce any of the 100 molecules that you want.”

It is possible, Keasling continued, that there might be “blockbuster drugs” in these other cannabinoids that are simply too “rare to have been studied” up until now.

A budding industry

“It’s going to be interesting to see how all of this plays out over the next few years,” Keasling said, on the topic of the continuing debate around marijuana legalization in the United States — and the world at large. “I would predict that there will be many more countries and U.S. states that will be legalizing recreational use of cannabinoids. It’s a really interesting time.”

Josh Edelson/Getty

If he’s right (and, heck, whatever else you can say about 2019, it can never be accused of being boring), then he’s in the right place to take advantage of it. The work of Keasling’s lab is currently in the process of being commercialized. He is the co-founder of a synthetic biology called Demetrix, which is working to develop this research into actual products.

“The company has 20 people,” he said. “We are working on improving the original yeast that we built. There’s now a yeast that works much better than the one reported in [our original paper]. It produces much higher quantities. I would say in the next two to three years we’ll have products out on the market from this process. [The company] is looking at both FDA-approved therapeutics and therapeutics that could be FDA-approved, as well as going into the cosmetic and nutraceuticals markets — and maybe even into the recreational market as well. I think it has broad commercial applications.”

But does this mean the end of the humble marijuana grower as we’ve known them? Don’t bank on it.

“I think there are still going to be a lot of people who want the ‘natural experience,’ let me put it that way,” he said. “It’s clear that there are also a lot of other components in cannabis — terpenes, flavors, fragrances — that give you that. Those may be challenging to replicate in the yeast fermentation process. I don’t expect that it will completely replace the plant process. But I do think that, for a number of applications, plants won’t be used. For example, for cosmetics companies that want to put CBD into skin creams, this will be the go-to way. The same might be true for CBD sport drinks or beer. Yeast fermentation means they’ll be able to know exactly what they’re putting in. But there will still be people who want to smoke marijuana — and they’ll always be a place for that.”

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Juiced Bikes offers 20% off on all e-bikes amid signs of bankruptcy
Juiced Bikes Scrambler ebike

A “20% off sitewide” banner on top of a company’s website should normally be cause for glee among customers. Except if you’re a fan of that company’s products and its executives remain silent amid mounting signs that said company might be on the brink of bankruptcy.That’s what’s happening with Juiced Bikes, the San Diego-based maker of e-bikes.According to numerous customer reports, Juiced Bikes has completely stopped responding to customer inquiries for some time, while its website is out of stock on all products. There are also numerous testimonies of layoffs at the company.Even more worrying signs are also piling up: The company’s assets, including its existing inventory of products, is appearing as listed for sale on an auction website used by companies that go out of business.In addition, a court case has been filed in New York against parent company Juiced Inc. and Juiced Bike founder Tora Harris, according to Trellis, a state trial court legal research platform.Founded in 2009 by Harris, a U.S. high-jump Olympian, Juiced Bikes was one of the early pioneers of the direct-to-consumer e-bike brands in the U.S. market.The company’s e-bikes developed a loyal fandom through the years. Last year, Digital Trends named the Juiced Bikes Scorpion X2 as the best moped-style e-bike for 2023, citing its versatility, rich feature set, and performance.The company has so far stayed silent amid all the reports. But should its bankruptcy be confirmed, it could legitimately be attributed to the post-pandemic whiplash experienced by the e-bike industry over the past few years. The Covid-19 pandemic had led to a huge spike in demand for e-bikes just as supply chains became heavily constrained. This led to a ramp-up of e-bike production to match the high demand. But when consumer demand dropped after the pandemic, e-bike makers were left with large stock surpluses.The good news is that the downturn phase might soon be over just as the industry is experiencing a wave of mergers and acquisitions, according to a report by Houlihan Lokey.This may mean that even if Juiced Bikes is indeed going under, the brand and its products might find a buyer and show up again on streets and trails.

Read more
Volkswagen plans 8 new affordable EVs by 2027, report says
volkswagen affordable evs 2027 id 2all

Back in the early 1970s, when soaring oil prices stifled consumer demand for gas-powered vehicles, Volkswagen took a bet on a battery system that would power its first-ever electric concept vehicle, the Elektro Bus.
Now that the German automaker is facing a huge slump in sales in Europe and China, it’s again turning to affordable electric vehicles to save the day.Volkswagen brand chief Thomas Schaefer told German media that the company plans to bring eight new affordable EVs to market by 2027."We have to produce our vehicles profitably and put them on the road at affordable prices," he is quoted as saying.
One of the models will be the ID.2all hatchback, the development of which is currently being expedited to 36 months from its previous 50-month schedule. Last year, VW unveiled the ID.2all concept, promising to give it a price tag of under 25,000 euros ($27,000) for its planned release in 2025.VW CEO Larry Blume has also hinted at a sub-$22,000 EV to be released after 2025.It’s unclear which models would reach U.S. shores. Last year, VW America said it planned to release an under-$35,000 EV in the U.S. by 2027.The price of batteries is one of the main hurdles to reduced EV’s production costs and lower sale prices. VW is developing its own unified battery cell in several European plants, as well as one plant in Ontario, Canada.But in order for would-be U.S. buyers to obtain the Inflation Reduction Act's $7,500 tax credit on the purchase of an EV, the vehicle and its components, including the battery, must be produced at least in part domestically.VW already has a plant in Chattanooga, Tennesse, and is planning a new plant in South Carolina. But it’s unclear whether its new unified battery cells would be built or assembled there.

Read more
Nissan launches charging network, gives Ariya access to Tesla SuperChargers
nissan charging ariya superchargers at station

Nissan just launched a charging network that gives owners of its EVs access to 90,000 charging stations on the Electrify America, Shell Recharge, ChargePoint and EVgo networks, all via the MyNissan app.It doesn’t stop there: Later this year, Nissan Ariya vehicles will be getting a North American Charging Standard (NACS) adapter, also known as the Tesla plug. And in 2025, Nissan will be offering electric vehicles (EVs) with a NACS port, giving access to Tesla’s SuperCharger network in the U.S. and Canada.Starting in November, Nissan EV drivers can use their MyNissan app to find charging stations, see charger availability in real time, and pay for charging with a payment method set up in the app.The Nissan Leaf, however, won’t have access to the functionality since the EV’s charging connector is not compatible. Leaf owners can still find charging stations through the NissanConnectEV and Services app.Meanwhile, the Nissan Ariya, and most EVs sold in the U.S., have a Combined Charging System Combo 1 (CCS1) port, which allows access to the Tesla SuperCharger network via an adapter.Nissan is joining the ever-growing list of automakers to adopt NACS. With adapters, EVs made by General Motors, Ford, Rivian, Honda and Volvo can already access the SuperCharger network. Kia, Hyundai, Toyota, BMW, Volkswagen, and Jaguar have also signed agreements to allow access in 2025.
Nissan has not revealed whether the adapter for the Ariya will be free or come at a cost. Some companies, such as Ford, Rivian and Kia, have provided adapters for free.
With its new Nissan Energy Charge Network and access to NACS, Nissan is pretty much covering all the bases for its EV drivers in need of charging up. ChargePoint has the largest EV charging network in the U.S., with over 38,500 stations and 70,000 charging ports at the end of July. Tesla's charging network is the second largest, though not all of its charging stations are part of the SuperCharger network.

Read more