Skip to main content

Exclusive: Take a look at what a next-generation 5G phone will look like

Ignacio Contreras, a 5G champion for Qualcomm, holds a reference design phone that runs on the next-generation networks. Jeremy Kaplan

I’m looking at what by all accounts is an ordinary smartphone. It’s black, made of glass and metal, and runs the latest version of Android. It’s also a unique glimpse of the future: It runs on the 5G networks AT&T and Verizon and Sprint and T-Mobile are even now racing to erect across the country. Faster speeds, lower latency, vast connectivity options … frankly, 5G seems sort of miraculous.

“It’s kind of like magic,” jokes Ignacio Contreras, director of Product Marketing with Qualcomm and a leading 5G champion for the company. I’m in Qualcomm’s sprawling corporate headquarters in San Diego on what must be the only cold and rainy day so far this winter (thanks, Mother Nature). Contreras is holding a reference design phone, recently unveiled by the company to help carriers and manufacturers plan out their next phones.

Expectations are all over the map regarding the next generation of phone. Will they be clunky bricks, thanks to heavy, power-inefficient chips? Will they double in thickness, yet only support a few hours of connectivity? We’ll see at Mobile World Congress later this month, of course, but in the meantime, we can lean on reference designs … and Contreras is confident that you’ll like what you see.

“What will be proven over the next few weeks — what we’re seeing with this reference design — is that 5G phones can have a nice, slick design. That’s a challenge that has been resolved,” Contreras says.

Solving the millimeter wave problem

The reference design supports both sub-6Ghz networks and emerging millimeter wave networks, and intriguingly, it addresses one of the big fears network analysts have about high-frequency bandwidths: Those signals don’t travel very far, and ordinary objects can impede them. Put a hand over an antenna and it can impact signal quality (remember Steve Jobs saying  “you’re holding it wrong”? Yep, we’re right back there.) In this reference design, Qualcomm has a solution to a problem many engineers and technicians thought insurmountable.

“People thought it was impossible. But it has been solved.”

“It’s very challenging. There’s no question about that,” Contreras said. “Up until a couple years ago, people thought it was impossible. It’s impossible. But it has been solved.” Partly that comes down to new components and technologies – stay tuned for news, we’re guessing – and partly it comes down to this reference design, which has not one but several antennas.

“In this reference design, we have three of these millimeter wave modules,” Contreras explained. One sits at the top of the phone, while radios line the left and right edge as well. “So if you block one of the antenna with your hand, or put it right next to an object, there’s another one that can still become active and be able to talk to the cell tower.”

Jeremy Kaplan/Digital Trends

Just consider: At any time, the chip needs to track signal quality and strength from each antenna to figure out which beam candidate is the best. It needs to quickly switch should one get blocked. It needs to handle transitions between different transmitters and base stations as well. And all while someone is walking, biking, or driving in a car at 75 miles an hour.

“Just to make it work is challenging. Making it work in this form factor, what you expect today with a smartphone, is crazy,” he told Digital Trends. “It’s kind of like magic, and kudos to all the engineers that work very long hours to get all of these things resolved.”

“Just to make it work is challenging. Making it work in this form factor, what you expect today with a smartphone, is crazy,”

This isn’t a dramatic change, by the way: Current phones contain as many as six or seven antenna; Qualcomm says you can expect 5G phones to have eight or nine. Technologies built into Qualcomm’s chips combine the signals from them and optimize return signals to ensure continuous coverage, regardless of any one antenna.

There’s the whole radio frequency part of the signal as well: Transceivers, filters, amplifiers — 5G requires a whole new set of those. “That’s why at Qualcomm, we had to start working on modules, not just selling discrete components,” he explained. Again, stay tuned.

Solving the power problem

A big part of the challenge with any network technology is power efficiency. And 5G comes with its own unique problems here. The higher bandwidths of 5G networks require more processing to operate, Contreras explains. To address it, the company leans on a technology called CDRX, or connected discontinuous reception.

More 5G coverage

“You’re connected, but you schedule with the tower to receive data only at certain points of time. Because if you have a high throughput, it might be more efficient to receive data in bursts, versus having a continuous flow of data,” Contreras said. That lets the phone put some monitoring components to sleep, and will only wake them when it knows data is coming.

Compare it to a hybrid car engine, which turns off the gasoline engine whenever possible in favor of the more efficient battery.

What will we see at MWC?

That’s not coming any time soon, you say? Au contraire.

“Virtually all major android manufacturers will be announcing or launching flagship 5G phones,” Contreras said. “Networks will be deployed across the globe – in the United States. Europe. Japan. South Korea. Australia, and China will see networks lighting up and growing.”

The future isn’t coming, in other words. The future is here.

“We feel a bit excited about what’s going to happen at Mobile World Congress, because the level of scale – networks, OEMs [original equipment manufacturers], infrastructure vendors — it’s just one standard. The ecosystem is very streamlined,” Contreras said.

Jeremy Kaplan
As Editor in Chief, Jeremy Kaplan transformed Digital Trends from a niche publisher into one of the fastest growing…
Here’s how fast 5G on your Samsung Galaxy S23 really is
Samsung Galaxy S23 cameras against greenery

If you’ve been on the fence about picking up one of the latest Galaxy S23 phones, some new research from Ookla may help tip the scales in Samsung’s favor.

In a new speed test report, Ookla tcompared the 5G performance specs of the Galaxy S23 models to last year’s Galaxy S22 in several countries — with some surprising results across the board.
A worthwhile 5G upgrade

Read more
Qualcomm’s Snapdragon X75 ushers in the next era of 5G connectivity
Qualcomm Snapdragon X75.

Qualcomm has just announced the Snapdragon X75, the company's sixth-generation 5G modem that promises to push smartphones and other connected devices into the next phase of 5G technology.

The Snapdragon X75 is the successor to last year's X70, which is the modem found in the Snapdragon 8 Gen 2 that powers this year's most powerful 5G smartphones — including Samsung's recently unveiled Galaxy S23 Ultra and the OnePlus 11. However, it's more than just an evolution of that earlier modem system, as Qualcomm has packed in support for next-generation 5G Advanced technology along with an entirely new architecture and powerful AI features that will allow mobile devices to access better coverage and achieve even faster speeds.
5G grows up big-time

Read more
Qualcomm’s Snapdragon X35 will bring 5G to your next smartwatch
Qualcomm Snapdragon X35.

Qualcomm is poised to deliver 5G capabilities to a whole new class of mobile devices with a new modem chip that bridges the gap between today's best smartphones and much lower-bandwidth devices like payment terminals and home accessories.

Announced today, Qualcomm's Snapdragon X35 5G Modem-RF system is the world's first to adopt NR-Light, a new 5G standard for midtier devices that don't require the power and performance of a 5G-capable smartphone or tablet — but can still take advantage of the lower latency and power consumption offered by 5G technology.
Filling the 5G void

Read more