Skip to main content

Digital Trends may earn a commission when you buy through links on our site. Why trust us?

One answer to the plastic waste problem? Hungry, hungry enzymes

The world has a major problem when it comes to waste plastic. A reported 91% of plastic is not recycled, adding up to billions of tons over the past decades. Much of this winds up becoming trash. A hungry, plastic-munching “enzyme cocktail” could help.

Recommended Videos

Researchers at the U.K.’s University of Portsmouth and the National Renewable Energy Laboratory in Golden, Colorado, have developed an enzyme that’s capable of breaking down polyethylene terephthalate (PET) into its composite building blocks impressively quickly — like, days instead of hundreds of years. This means that plastics could be manufactured and reused endlessly. That, in turn, could have a significant impact on our reliance on fossil resources like oil and gas. In short, it could turn out to be a game-changer for recycling.

The international team of investigators behind the enzyme mix has been working on this problem for a while. They previously had some promising results with a plastic-consuming enzyme called PETase. But in their latest work, they have re-engineered it in a lab and combined it with a second enzyme called MHETase, for a proof-of-concept mixture able to digest plastic up to six times faster than their previous creation.

“This project essentially joins two natural enzymes that originated in the bacterium discovered in [a] Japanese PET recycling site,” John McGeehan, director of the Center for Enzyme Innovation at Portsmouth University, told Digital Trends.

Although this combination is undoubtedly impressive, however, McGeehan said there is still more fine-tuning to be done. “While we see a six times activity improvement in this chimeric enzyme compared to the PETase enzyme alone, there is large scope for further improvements using protein engineering,” he said. “In addition, we also have the potential to connect other enzymes together to tackle different plastics or mixed plastics. This current enzyme is too slow to be commercially viable at this point, but companies such as Carbios are already starting to build large-scale plants to do this.”

A study describing the work, titled “Characterization and engineering of a two-enzyme system for plastics depolymerization,” was recently published in the journal Proceedings of the National Academy of Sciences of the United States of America.

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
iPhone 17 series could finally end Apple’s stingy era of slow screens
iPhone on charging stand showing photo screen in iOS 17 StandBy mode.

Apple has played a relatively slow innovation game when it comes to display upgrades on its phones. The company took its own sweet time embracing OLED screens, then did the same with getting rid of the ugly notch, and still has a lot of ground to cover at adopting high refresh rate panels.

The status could finally change next year. According to Korea-based ET News, which cites an industry source, Apple will fit an LTPO (low-temperature polycrystalline oxide) screen across the entire iPhone 17 series, including the rumored slim version and the entry-point model.

Read more
Aptera’s 3-wheel solar EV hits milestone on way toward 2025 commercialization
Aptera 2e

EV drivers may relish that charging networks are climbing over each other to provide needed juice alongside roads and highways.

But they may relish even more not having to make many recharging stops along the way as their EV soaks up the bountiful energy coming straight from the sun.

Read more
Ford ships new NACS adapters to EV customers
Ford EVs at a Tesla Supercharger station.

Thanks to a Tesla-provided adapter, owners of Ford electric vehicles were among the first non-Tesla drivers to get access to the SuperCharger network in the U.S.

Yet, amid slowing supply from Tesla, Ford is now turning to Lectron, an EV accessories supplier, to provide these North American Charging Standard (NACS) adapters, according to InsideEVs.

Read more