Skip to main content

New self-driving car algorithm keeps you safe by constantly predicting doom

Call it fatalistic, pessimistic, or just really, really, smart, but a new self-driving car algorithm developed by researchers at Germany’s Technical University of Munich (TUM) thrives on thinking about the worst thing that could happen at every moment. And then figuring out how to get out of it without endangering or obstructing traffic.

Recommended Videos

“Current autonomous driving systems usually incorporate most-likely evolutions of a traffic scenario, [such as] the preceding vehicle will most likely accelerate,” Christian Pek, a researcher in the university’s researcher in the Cyber-Physical Systems Group, told Digital Trends. “However, this design might result in unsafe behaviors if traffic participants behave differently than expected — for example, [if instead] the preceding vehicle decelerates. Our algorithm addresses this problem by computing all possible future evolutions of the scenario by considering all possible motions of other traffic participants that are compliant with traffic rules. As a result, we are able to ensure that decisions are safe regardless of the future legal motion of other traffic participants.”

The algorithm works by evaluating vehicle sensor data every millisecond to extrapolate potential behavior up to six seconds into the future. This is something that good human drivers do almost unconsciously, but which proves difficult for machines to emulate. Based on the scenarios this new self-driving car system comes up with, it then works out what emergency maneuvers it would need to perform so as not to endanger others or cause collisions. Think of it like Asimov’s Laws of Robotics, self-driving car edition.

This traffic situation forecasting has been deemed too time-consuming in the past. But the team at Munich have shown that it can work, using simplified dynamic models and reachability analysis to figure out future positions that cars and pedestrians might take.

“Our software serves as a safety layer for motion planning and verifies whether decisions of the autonomous vehicles are safe during its operation,” Stefanie Manzinger, a Ph.D. student in the Cyber-Physical Systems Group, told Digital Trends. “In emergency situations, our safety layer stops the autonomous vehicle in dedicated safe areas.”

According to Pek, the team demonstrated the safety benefits and performance of its algorithm on real traffic data recorded with a test vehicle in Munich. “Our scenarios correspond to critical situations, for example, turning left at an intersection with oncoming traffic,” Pek said. “Our results show that our algorithm safeguards the autonomous vehicles in these situations without performance loss. Following this proof-of-concept, our next step is to test our algorithm in more situations together with partners.”

A paper describing the work was recently published in the journal Nature Machine Intelligence.

Luke Dormehl
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
How a big blue van from 1986 paved the way for self-driving cars
Lineup of all 5 Navlab autonomous vehicles.

In 1986, a blue Chevy van often cruised around the streets of Pittsburgh, Pennsylvania near Carnegie Mellon University. To the casual observer, nothing about it appeared out of the ordinary. Most people would pass by it without noticing the camcorder peeking out from its roof, or the fact that there were no hands on the steering wheel.

But if any passerby had stopped to inspect the van and peer into its interior, they would have realized it was no ordinary car. This was the world's first self-driving automobile: A pioneering work of computer science and engineering somehow built in a world where fax machines were still the predominant way to send documents, and most phones still had cords. But despite being stuck in an era where technology hadn't caught up to humanity's imagination quite yet, the van -- and the researchers crammed into it -- helped to lay the groundwork for all the Teslas, Waymos, and self-driving Uber prototypes cruising around our streets in 2022.

Read more
Aptiv’s machine learning-powered radar sees even what you don’t
lyft and aptivs self driving car program has come a long way but not far enough aptiv screen press

Aptiv traveled to CES 2022 to showcase the improvements it has made to its suite of advanced driver assistance systems. It notably leveraged the power of machine learning technology to help its self-driving prototypes detect and classify objects, even those that are out of sight.

Think of a self-driving car as a human being; radars are the eyes and machine learning technology is the brain. Fitting radars to a car's body allows it to scope out the environment it operates in. It can detect that there's a car in front of it, that there's a bike coming the other way, and that there's a traffic light it needs to stop for. These are fairly straightforward tasks that most self-driving prototypes already perform.

Read more
We now know what the self-driving Apple Car might look like
A render that shows what the Apple Car might look like.

Thanks to several 3D concept renders, we now know what the future self-driving Apple Car might look like.

Vanarama, a British car-leasing company, took inspiration from other Apple products, as well as Apple patents, in order to accurately picture the rumored Apple car.

Read more