Skip to main content

Shutterstock’s visual search engine could make browsing photos less of a chore


Perhaps somewhat ironically, we are used to searching for photos through text. Looking for a photo of a cat? Just type in “cat” in the Google image search bar, and it will return relevant photos (provided they were tagged as such, of course). Keywords will do the job at the most basic level, but what if you are looking for a specific type of photo? You could type “yellow cat” or some sort of generic description, but things become difficult as the description becomes more complex.

To address this, photo agency Shutterstock has just launched a new tool, called Reverse Image Search, that allows customers to upload a photo (up to 5MB) and find images that are similar. Using computer vision, Shutterstock says the tool breaks through the limiting ceiling of metadata.

Recommended Videos

Besides keywords, “the technology now relies instead on pixel data within images,” wrote Kevin Lester, who is Shutterstock’s vice president of engineering, in a blog post. “It has studied our 70 million images and 4 million video clips, broken them down into their principal features, and now recognizes what’s inside each and every image, including shapes, colors, and the smallest of details; this visual and conceptual data is represented numerically.”

Although this kind of computer vision-based search technology has existed for years (Google’s image search lets you do the same thing), when compared with similar tools offered by other stock photo services, Shutterstock says its technology is the most refined.

“It isn’t the first, but it’s the best on the market,” says Lawrence Lazare, Shutterstock’s product director for search and discovery.

The big benefits of using computer vision are accuracy and speed, and for Shutterstock’s customer base, it solves a major problem with search. It cuts down on the amount of time spent on searching for an image. If you are looking for inspiration or something generic, metadata (keywords) is easier, Lazare says. But if you are creating something specific — an ad campaign, for example — and you have specific requirements for what needs to be in that photo, then words aren’t as successful.

“Words are fallible — some pictures are hard to describe,” Lazare adds. “Some photos would require a short story to describe, and people don’t search like that.”

For example, typing in “sunset” into the search bar will result in 14,394 pages encompassing 1,439,383 photos, illustrations, and vector art that depict a sunset. And the photos are dependent on whether the photographer added keywords properly (sometimes a photographer will use a bunch of keywords to tag a batch of photos, say a wedding, but then may include photos that aren’t related).

The image on the left shows varied results when searching by keywords. The image on the right shows visually similar results when using visual search.
The image on the left shows varied results when searching by keywords. The image on the right shows visually similar results when using visual search. Image used with permission by copyright holder

You could narrow down the search results by adding additional keywords, like “city and architecture,” but, as it turns out, you’ll still have 140,330 options to browse through. It’s even more difficult when the photo in your head has nuances like the angle of a building or the color of a sunset.

Which is why visual similarity is more useful than keyword similarity, Lazare says, but this type of search requires a significant amount of machine learning, and it is not an easy task. When an image is uploaded, the computer breaks it down numerically — in a manner that it can understand — so that it can compare and contrast the important aspects of the image. The computer has to compare it against the millions of photos in Shutterstock’s archive, and do so incredibly quickly; it takes less than 20 milliseconds for the algorithms to compare and contrast 70 million images in real time. For the computer, some photos are easier to decipher, but when you have things like abstract art or colors, it’s a bit harder, and the computer is more likely to return “false positives.”

To achieve its success rates, the neural network utilized by Shutterstock’s computers required a lot of training. At the beginning, the first attempts weren’t good, but over time, the responses — reflecting the learning they were doing on their own — improved. Lester, who oversees search as well as the computer vision team, told us that in about a year’s time, the company managed to go from having nothing to having something that works well.

From our own experiments (the feature is live, and anyone can try it out by uploading an image), we can say the visual search tool is pretty good. Although it has trouble with complicated photos, it’s more successful with simpler ones. But Shutterstock, of course, isn’t the only company to develop a visual search engine: We noticed equally good results via Google’s image search, and many of Shutterstock’s competitors offer visual search as well (although Shutterstock showed us similar technology from competitors, and claims they aren’t as successful, hence one reason why they decided to build it from scratch).

We uploaded a fairly complicated photo, and threw the computer off. However, it does recognize that it's some type of architecture.
We uploaded a fairly complicated photo, and threw the computer off. However, it does recognize that it’s some type of architecture. Image used with permission by copyright holder

This all shows just how far along computer vision and machine learning have come in a relatively short time. And it’s only going to get better: Shutterstock is adding new tools to its network that would allow users to give its computers feedback about the quality of the search results, and will soon unveil visual search for its four million video footage assets, which is an even greater challenge than static photos.

Les Shu
Former Digital Trends Contributor
I am formerly a senior editor at Digital Trends. I bring with me more than a decade of tech and lifestyle journalism…
GoPro launches ultralight, affordable Hero 4K Camera for $199
The 2024 GoPro hero is frozen in ice.

GoPro enthusiasts have a new camera to consider after the company introduced its miniature, ultralight 4K Hero late last week. It is the company's smallest and most affordable offering, costing just $199.

The Hero is waterproof and combines GoPro's simplest user interface with 4K video, 2x slo-mo at 2.7K resolution, and 12-megapixel photos. It is available on retail shelves around the world and online at GoPro's website.

Read more
The best camera phones in 2024: our top 9 photography picks
A person holding the Samsung Galaxy S24 Ultra and Xiaomi 14 Ultra.

In the past decade or so, cameras on smartphones have evolved so much that they can pretty much replace a standalone digital camera for most people. The results you can get on some of the best smartphones these days are just so impressive, and being able to be with you at all times means you'll never miss a moment.

But what if you want the best possible camera phone money can buy? A camera that won't let you down no matter what you're taking a picture of? You've come to the right place. Here are the very best camera phones you can buy in 2024.

Read more
An ace photographer is about to leave the ISS. Here are his best shots
The moon and Earth as seen from the ISS.

NASA astronaut Matthew Dominick is preparing to return to Earth after spending seven months living and working aboard the International Space Station (ISS).

After arriving at the orbital outpost, Dominick -- who is on his first mission to space -- quickly earned a reputation for being an ace photographer. He's been using the facility’s plethora of high-end cameras and lenses to capture amazing shots from his unique vantage point some 250 miles above Earth. Sharing his content on social media, the American astronaut has always been happy to reveal how he captured the imagery and offer extra insight for folks interested to know more.

Read more