Skip to main content

Something strange is up with this black hole

One of the first things that people learn about black holes is that they absorb everything which comes close to them, but this isn’t exactly accurate. It is true that once anything passes the event horizon of a black hole it can never escape, but there is a significant area around the black hole where its gravitational effects are still extremely strong but things can still escape. In fact, black holes regularly give off dramatic jets of matter, which are typically thrown out when material falls into the black hole and a small amount is ejected outward at great speeds.

But astronomers recently discovered a totally mysterious phenomenon, where a black hole is ejecting material years after it ripped apart a star. The black hole AT2019dsg is located 665 million light-years away and was observed tearing apart the star in 2018, then for unknown reasons, it became extremely active again in 2021. “This caught us completely by surprise — no one has ever seen anything like this before,” said lead author Yvette Cendes, a research associate at the Center for Astrophysics | Harvard & Smithsonian (CfA).

 Artist’s illustration of tidal disruption event AT2019dsg where a supermassive black hole spaghettifies and gobbles down a star. Some of the material is not consumed by the black hole and is flung back out into space.
Artist’s illustration of tidal disruption event AT2019dsg where a supermassive black hole spaghettifies and gobbles down a star. Some of the material is not consumed by the black hole and is flung back out into space. DESY, Science Communication Lab

The black hole is throwing out material at a tremendous speed of half the speed of light. This happened years after the star was spaghettified by the black hole, in what is called a tidal disruption event (TDE), and there is no obvious explanation for this delay.

“We have been studying TDEs with radio telescopes for more than a decade, and we sometimes find they shine in radio waves as they spew out material while the star is first being consumed by the black hole,” said co-author Edo Berger. “But in AT2018hyz there was radio silence for the first three years, and now it’s dramatically lit up to become one of the most radio luminous TDEs ever observed.”

The particularly strange thing is that the researchers had observed this spaghettification event and found it was “unremarkable.” Yet for some reason, this outflow is both very delayed and much faster than typical outflows.

“This is the first time that we have witnessed such a long delay between the feeding and the outflow,” Berger says. “The next step is to explore whether this actually happens more regularly and we have simply not been looking at TDEs late enough in their evolution.”

The research is published in The Astrophysical Journal.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
The search for habitable moons in the solar system is heating up
During a 2005 flyby, NASA’s Cassini spacecraft took high-resolution images of Enceladus that were combined into this mosaic, which shows the long fissures at the moon’s south pole that allow water from the subsurface ocean to escape into space.

In the search for life beyond Earth, one of the most exciting potential locations to explore is Saturn's icy moon Enceladus. With its thick icy crust covering a liquid water ocean, the moon is notable both for the plumes of water spraying from its surface and the fact that it could potentially support life. Now, the search for habitable environments is heating up as astronomers discovered that Enceladus hosts phosphorus, which is an important element for life.

The research used data from the Cassini mission, which performed multiple flybys of Enceladus in the mid-2000s, investigating the water plumes and cryovolcanoes that dot its surface. The spacecraft also flew through one of the outer rings of Saturn, which carries particles that are sent out by the Enceladus plumes. While much of the Cassini data has been studied extensively, this new research is the first time that phosphorus has been detected in it.

Read more
Horrifying up-close images of a sunspot captured by the Inouye Solar Telescope
This image reveals the fine structures of a sunspot in the photosphere. Within the dark, central area of the sunspot’s umbra, small-scale bright dots, known as umbral dots, are seen. The elongated structures surrounding the umbra are visible as bright-headed strands known as penumbral filaments. Umbra: Dark, central region of a sunspot where the magnetic field is strongest. Penumbra: The brighter, surrounding region of a sunspot’s umbra characterized by bright filamentary structures.

A stunning new set of images from the Daniel K. Inouye Solar Telescope shows the surface of the sun in incredible detail -- including frankly disturbing images of sunspots seen up close. The images have been collected over the telescope's first year of operations and have been shared as a preview of the data that can be expected from this tool.

Located in Maui, Hawai'i, the Inouye Solar Telescope is specifically designed to be able to look at the surface of the sun to learn about its magnetic fields, which are important for understanding the space weather which is caused by solar eruptions. The newly released images show calmer, quieter areas of the sun's surface and the deep black of sunspots, which are temporary dark regions that periodically appear on the surface, or photosphere.

Read more
Hubble goes hunting for elusive medium-sized black holes
A Hubble Space Telescope image of the globular star cluster, Messier 4. The cluster is a dense collection of several hundred thousand stars. Astronomers suspect that an intermediate-mass black hole, weighing as much as 800 times the mass of our Sun, is lurking, unseen, at its core.

There's something odd about the black holes discovered to date. We've found plenty of smaller black holes, with masses less than 100 times that of the sun, and plenty of huge black holes, with masses millions or even billions of times that of the sun. But we've found hardly any black holes in the intermediate mass range, arguably not enough to confirm that they even exist, and it's not really clear why.

Now, astronomers are using the Hubble Space Telescope to hunt for these missing black holes. Hubble has previously found some evidence of black holes in this intermediate range, and now it is being used to search for examples within a few thousand light-years of Earth.

Read more