Skip to main content

This black hole is creating enormous glowing X-ray rings

A Quick Look at V404 Cygni

Astronomers are observing an unusual black hole which is surrounded by enormous X-ray rings. Using the Chandra X-ray Observatory and the Neil Gehrels Swift Observatory, researchers have been investigating how this strange phenomenon came to be and what it can tell us about both black holes and cosmic dust.

The black hole is part of a binary system called V404 Cygni, meaning the black hole has a companion star from which it is siphoning off material. As the black hole’s gravity pulls gas away from the star and devours it, the material is forming into a disk around the black hole. This disk glows in the X-ray wavelength, meaning the system is of a type called an X-ray binary.

But this particular system doesn’t just have a disk of material — it is also does something special, giving off periodic bursts of X-rays. These bursts bounce off the clouds of dust which are located between there and Earth, creating rings called light echos, in a similar way to how sound waves bounce off a wall.

To study this phenomenon, researchers collected data in both the X-ray and visible light wavelengths, combining the two into the image below. It shows a series of concentric rings, with some gaps due to the limits of Chandra’s field of view. In total, eight separate rings were observed.

The black hole in V404 Cygni.
The black hole in V404 Cygni is actively pulling material away from a companion star — with about half the mass of the Sun — into a disk around the invisible object. A burst of X-rays from the black hole detected in 2015 created the high-energy rings from a phenomenon known as light echoes, where light bounces off of dust clouds in between the system and Earth. X-ray: NASA/CXC/U.Wisc-Madison/S. Heinz et al.; Optical/IR: Pan-STARRS

This discovery isn’t only of interest because it can tell us about this black hole. It can also tell us about the dust clouds which were involved, and about the space in between V404 Cygni and Earth.

“The rings tell astronomers not only about the black hole’s behavior but also about the landscape between V404 Cygni and Earth,” Chandra scientists wrote. “For example, the diameter of the rings in X-rays reveals the distances to the intervening dust clouds the light ricocheted off. If the cloud is closer to Earth, the ring appears to be larger, and vice versa. The light echoes appear as narrow rings rather than wide rings or haloes because the X-ray burst lasted only a relatively short period of time. “

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Astronomers spot a monster black hole ‘practically in our backyard’
The cross-hairs mark the location of the newly discovered monster black hole.

Black holes come in a variety of sizes, from stellar black holes a few times the mass of the sun all the way up to supermassive black holes, which are millions of times the mass of the sun and lurk at the heart of galaxies. Recently, astronomers discovered a massive black hole just 1,550 light-years away, which is right in our neighborhood, astronomically speaking. It is one of the closest black holes ever discovered, with a mass 12 times that of the sun. Being so close to us, it's an exciting target for future research.

The cross-hairs mark the location of the newly discovered monster black hole. Sloan Digital Sky Survey / S. Chakrabart et al.

Read more
Something strange is up with this black hole
Artist’s illustration of tidal disruption event AT2019dsg where a supermassive black hole spaghettifies and gobbles down a star. Some of the material is not consumed by the black hole and is flung back out into space.

One of the first things that people learn about black holes is that they absorb everything which comes close to them, but this isn't exactly accurate. It is true that once anything passes the event horizon of a black hole it can never escape, but there is a significant area around the black hole where its gravitational effects are still extremely strong but things can still escape. In fact, black holes regularly give off dramatic jets of matter, which are typically thrown out when material falls into the black hole and a small amount is ejected outward at great speeds.

But astronomers recently discovered a totally mysterious phenomenon, where a black hole is ejecting material years after it ripped apart a star. The black hole AT2019dsg is located 665 million light-years away and was observed tearing apart the star in 2018, then for unknown reasons, it became extremely active again in 2021. “This caught us completely by surprise — no one has ever seen anything like this before,” said lead author Yvette Cendes, a research associate at the Center for Astrophysics | Harvard & Smithsonian (CfA).

Read more
X-ray data from Chandra gives a new view of Webb’s first images
X-rays from Chandra have been combined with infrared data from early publicly-released James Webb Space Telescope images.

This week has been a fun time for telescope team-ups, with a recent project combining data from the James Webb and Hubble Space Telescopes. There's also a second set of images that has been released that combines data from the James Webb Space Telescope and the Chandra X-ray Observatory.

The Chandra observatory, which is also a space-based telescope, looks in the X-ray wavelength to investigate phenomena like epic kilonova explosions, search for the universe's missing matter, and capture stunning images of the universe as seen in X-ray observations. It has even been used to detect a possible exoplanet in the Whirlpool galaxy. Now, it has turned its sights on the targets of James Webb's first images to show these now-famous objects in a new light.

Read more