Skip to main content

Curiosity rover battles up a 23-degree slope in its exploration of Mars

The Curiosity rover is slowly making its way up Mount Sharp, a 3-mile-tall mountain on Mars. Mountains are useful to study as their steep slopes can reveal layers of material laid down over time, like a geological time capsule. But just like heaving up a mountain is a challenge for humans, it can be tricky for rovers too. Curiosity recently took on a particularly steep and slippery slope, marking its most challenging climb to date.

How difficult terrain is for a rover to pass depends on a number of factors, including how steep it is, how slippery the sand is, and what obstacles such as boulders or sharp rocks are present. This ascent, which the rover tackled through May and June, had all of the above including a 23-degree incline. “If you’ve ever tried running up a sand dune on a beach – and that’s essentially what we were doing – you know it’s hard, but there were boulders in there as well,” said Amy Hale, a Curiosity rover driver at NASA’s Jet Propulsion Laboratory (JPL), in a statement.

This map shows the route NASA’s Curiosity Mars rover took from May into July to complete the most difficult climb of the mission. Starting in “Marker Band Valley” (the darker area at the top center), the route is shown in white, with dots indicating each stop the rover made.
This map shows the route NASA’s Curiosity Mars rover took from May into July to complete the most difficult climb of the mission. Starting in “Marker Band Valley” (the darker area at the top center), the route is shown in white, with dots indicating each stop the rover made. NASA/JPL-Caltech/USGS-Flagstaff/University of Arizona

The rover drivers like Hale plan out the safest possible route for the rover to travel to get it where it needs to go, then send these commands on to the rover. That’s necessary because of the communications delay between Earth and Mars, which can be up to 20 minutes depending on the planets’ relative positions to each other, which would make it impossible to drive the rover in real time. It also allows for more careful forward planning to ensure no harm comes to the rover.

However, sometimes the rover has issues following the commands sent by the drivers, such as if a wheel slips or rolls across a high rock. If the rover experiences any unexpected circumstances like these, it is programmed to stop to prevent any damage — and the drivers refer to these stops as faults.

In the recent ascent, these faults were a frequent issue. “We were basically playing fault bingo,” said Dane Schoelen, Curiosity’s strategic route planning lead at JPL. “Each day when we came in, we’d find out we faulted for one reason or another.”

The drivers decided to take a slight detour which added a few weeks of travel but turned out to be easier to traverse and allowed the rover to reach the end of the climb.

“It felt great to finally get over the ridge and see that amazing vista,” Schoelen said. “I get to look at images of Mars all day long, so I really get a sense of the landscape. I often feel like I’m standing right there next to Curiosity, looking back at how far it has climbed.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
See a 3D view of a martian crater captured by the Perseverance rover
A snippet of the mosaic of Belva Crater taken by the Perseverance rover.

The Jezero crater on Mars, where NASA's Perseverance is currently exploring, is vast at nearly 30 miles across and was likely created by a huge asteroid impact. But there wasn't just one asteroid impact -- it's thought that several asteroids hit the area over millions of years, creating a succession of craters that overlap and fit within each other.

A snippet of the mosaic of Belva Crater taken by the Perseverance rover. NASA/JPL-Caltech/ASU/MSSS

Read more
Perseverance rover finds evidence of an ancient river on Mars
NASA’s Perseverance Mars rover captured this mosaic of a hill nicknamed “Pinestand.” Scientists think the tall sedimentary layers stacked on top of one another here could have been formed by a deep, fast-moving river.

The Perseverance rover has been exploring Mars's Jezero Crater as part of its mission to search for evidence of ancient life on Mars. The history of water is key in the search for life, and it is currently thought that Mars lost its water around 4 million years ago. Now, the rover has identified evidence of what was once one of the deepest and fast-flowing rivers yet discovered on the planet.

The rover captured a series of hundreds of images using its Mastcam-Z instrument, which were put together into this mosaic showing a hill structure called Pinestand. In the image, you can see the many layers left behind by the flowing river, which were formed by deposits of sediment.

Read more
Ingenuity and Perseverance snap photos of each other on Mars
The Ingenuity helicopter on the surface of Mars, in an image taken by the Perseverance rover. Ingenuity recently made its 50th flight.

Everyone's favorite Mars double act, the Ingenuity helicopter and the Perseverance rover, have been traveling together recently after spending several months apart. As they explore the site of an ancient river delta in the Jezero crater, the pair have snapped images of each other that were recently shared by NASA.

The Perseverance's cameras caught this great shot of Ingenuity, which, as noted in the rover's Twitter post, is now considerably dustier than it was when it first deployed from under the rover's belly two years ago. In its two years on the red planet, Ingenuity has made more than 50 flights, which is incredible when you consider that it was designed to perform just five flights. During that time, Ingenuity had to take a break from long flights to deal with the cold martian winter, but since the beginning of the year, the helicopter has been back, making some of its longest flights yet.

Read more