Skip to main content

Famous black hole is even more massive than previously thought

An artist’s impression of the Cygnus X-1 system. This system contains the most massive stellar-mass black hole ever detected without the use of gravitational waves, weighing in at 21 times the mass of the Sun.
An artist’s impression of the Cygnus X-1 system. This system contains the most massive stellar-mass black hole ever detected without the use of gravitational waves, weighing in at 21 times the mass of the sun.  International Centre for Radio Astronomy Research

The Cygnus X-1 system is home to one of the world’s most famous black holes. It was the first-ever black hole detected and has become one of the most studied objects of its type. It was even once the subject of a bet between two renowned physicists: Stephen Hawking and Kip Thorne. Thorne bet Hawking that the object was a black hole in 1974, and Hawking cheerfully conceded in 1990 once the data came in.

Now, astronomers from the International Centre for Radio Astronomy Research (ICRAR) have discovered something surprising about this oft-observed object: It is both more massive and further away than previously thought.

To measure the distance to the object more accurately, the researchers used the Very Long Baseline Array — a group of 10 dishes across the U.S. — and a technique based on viewing the object from different angles as the Earth rotates.

“If we can view the same object from different locations, we can calculate its distance away from us by measuring how far the object appears to move relative to the background,” explained lead researcher Professor James Miller-Jones from Curtin University and the International Centre for Radio Astronomy Research (ICRAR) in a statement.

“If you hold your finger out in front of your eyes and view it with one eye at a time, you’ll notice your finger appears to jump from one spot to another. It’s exactly the same principle.”

The recently gathered data was also compared to previous readings taken a decade ago, which helped to reveal the black hole’s extra mass. “Over six days we observed a full orbit of the black hole and used observations taken of the same system with the same telescope array in 2011,” Professor Miller-Jones said. “This method and our new measurements show the system is further away than previously thought, with a black hole that’s significantly more massive.”

The new results show that the black hole has a mass of 21 times the mass of the sun, which is 50% more than was previously thought.

Another oddity about this particular black hole is that it has a supergiant companion star which is 22 times the size of the sun. This supergiant and the black hole orbit around each other close together and very fast — completing an orbit every five and a half days.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Astronomers want your help to spot hidden black holes
This simulation of a supermassive black hole shows how it distorts the starry background and captures light, producing a black hole silhouettes.

Black holes are some of the most mind-bending objects in the universe. They are so dense that anything which passes their event horizon, even light, can't escape. That's where they get their name, as the black hole itself is impossible to see. Fortunately for researchers, many black holes have material like dust and gas around them, and when this material falls into a black hole it can give off bursts of X-rays which allow them to locate the black hole.

But this isn't the case for every black hole. Some are not taking in material, meaning they don't give off X-rays and are much harder to locate. Now, a citizen science project is inviting members of the public to help search for these "hidden" black holes.

Read more
Hubble spots isolated black hole drifting alone through our galaxy
This is an artist’s impression of a black hole drifting through our Milky Way galaxy. The black hole is the crushed remnant of a massive star that exploded as a supernova. The surviving core is several times the mass of our Sun. The black hole traps light because of its intense gravitational field. The black hole distorts the space around it, which warps images of background stars lined up almost directly behind it. This gravitational "lensing" effect offers the only telltale evidence for the existence of lone black holes wandering our galaxy, of which there may be a population of 100 million. The Hubble Space Telescope goes hunting for these black holes by looking for distortion in starlight as the black holes drift in front of background stars.

Out in the depths of our galaxy roam lonely monsters: Isolated black holes which drift through space unattached to stars or other black holes. Though astronomers know that up to 100 million of these black holes exist in the Milky Way, they are exceedingly hard to spot. But now, data from the Hubble Space Telescope has been used to identify one of these lonely wanderers for the first time.

Located 5,00 light-years away in a spiral arm of the Milky Way called Carina-Sagittarius, the black hole was spotted by looking at the way it warps the light coming from stars behind it. As black holes don't emit any light themselves, their presence has to be inferred from seeing their effects such as the way their gravity bends light from other sources.

Read more
Black holes all look like donuts, regardless of their size
The EHT Collaboration created a flurry of images of Sagittarius A*, using ray tracing, a technique that visualizes the properties of the black hole based on data collected with the radio telescope array and predictions made by Einstein's theory of general relativity. The images shown here were created by UArizona's Chi-kwan Chan.

The release of a remarkable image of the black hole at the center of our galaxy isn't only an incredible scientific achievement -- it also agrees precisely with predictions about what black holes are and how these strange objects are formed by the power of gravity.

The black hole, called Sagittarius A*, is a type called a supermassive black hole, which is found at the center of almost all galaxies. Ours is on the smaller end for such giants: At 4.3 million times the mass of the sun, it's much smaller than other monsters like the one is Messier 87 which was imaged in 2019 and which is 6.5 billion times the mass of the sun.

Read more