Skip to main content

See the dramatic and spooky Dark Wolf Nebula

Fittingly nicknamed the Dark Wolf Nebula, this cosmic cloud was captured in a 283-million-pixel image by the VLT Survey Telescope (VST) at ESO’s Paranal Observatory in Chile. Located around 5300 light-years from Earth, the cold clouds of cosmic dust create the illusion of a wolf-like silhouette against a colourful backdrop of glowing gas clouds.
Fittingly nicknamed the Dark Wolf Nebula, this cosmic cloud was captured in a 283-million-pixel image by the VLT Survey Telescope (VST) at ESO’s Paranal Observatory in Chile. Located around 5300 light-years from Earth, the cold clouds of cosmic dust create the illusion of a wolf-like silhouette against a colourful backdrop of glowing gas clouds. ESO/VPHAS+ team

A stunning space image from the European Southern Observatory (ESO) shows a spooky cosmic wolf, in a structure fittingly named the Dark Wolf Nebula. Captured using ESO’s VLT Survey Telescope in Chile, the full image has 283 million pixels and shows the nebula located 5,300 light-years away.

Many of the most striking structures you see in space images are nebulae, which are clouds of dust and gas that often host forming stars. Often, these nebulae will be illuminated in beautiful colors due to radiation from the young stars inside them, which ionizes gas and makes it glow. But this nebula is the opposite, being a type called a dark nebula. In these nebulae, the dust that makes up the cloud is so thick and dense that it prevents visible light from passing through it, appearing like a dark smudge.

Recommended Videos

“If you thought that darkness equals emptiness, think again,” ESO explains. “Dark nebulae are cold clouds of cosmic dust, so dense that they obscure the light of stars and other objects behind them. As their name suggests, they do not emit visible light, unlike other nebulae. Dust grains within them absorb visible light and only let through radiation at longer wavelengths, like infrared light. Astronomers study these clouds of frozen dust because they often contain new stars in the making.”

Fittingly nicknamed the Dark Wolf Nebula, this cosmic cloud was captured in a 283-million-pixel image by the VLT Survey Telescope (VST) at ESO’s Paranal Observatory in Chile. Located around 5300 light-years from Earth, the cold clouds of cosmic dust create the illusion of a wolf-like silhouette against a colourful backdrop of glowing gas clouds.
Fittingly nicknamed the Dark Wolf Nebula, this cosmic cloud was captured in a 283-million-pixel image by the VLT Survey Telescope (VST) at ESO’s Paranal Observatory in Chile. Located around 5,300 light-years from Earth, the cold clouds of cosmic dust create the illusion of a wolf-like silhouette against a colorful backdrop of glowing gas clouds. ESO/VPHAS+ team

To capture this image, a series of different separate images had to be taken using different filters. Each filter captures a particular wavelength of light, and when the data is put together, it forms the colorful and detailed image we see. The original images were taken as part of a survey called the VST Photometric Hα Survey of the Southern Galactic Plane and Bulge, which focuses on the main part of the galaxy as seen from the southern sky. It has also taken previous beautiful images of objects like the Lagoon Nebula and a striking area of the sky called Baade’s Window.

The survey was completed in August 2018, but data from the 500 million objects it covered in our Milky Way is still being used for scientific discovery and for creating beautiful images like this one. If you fancy going digging through the data for yourself, the full trove of images is viewable using the ESO Archive Science Portal.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
This star shredded its companion to create a stunning double-lobed nebula
A billowing pair of nearly symmetrical loops of dust and gas mark the death throes of an ancient red-giant star, as captured by Gemini South, one half of the International Gemini Observatory, operated by NSF’s NOIRLab. The resulting structure, said to resemble an old style of English jug, is a rarely seen bipolar reflection nebula. Evidence suggests that this object formed by the interactions between the dying red giant and a now-shredded companion star. The image was obtained by NOIRLab’s Communication, Education & Engagement team as part of the NOIRLab Legacy Imaging Program.

Nebulae are some of the most beautiful structures to be found in space: vast clouds of dust and gas that are illuminated by light from nearby stars. These regions are often busy sites of star formation, as new stars are born from clumps of dust that collect more material due to gravity. Within the category of nebulae, there are different types such as emission nebulae, where the gases are ionized by radiation and glow brightly, or supernova remnants, which are the structures left behind after massive stars come to the end of their lives and explode.

A recent image captured by NOIRLab's Gemini South telescope shows a rare type of nebula called a bipolar reflection nebula. Known as the Toby Jug Nebula for its similar shape to a traditional English jug, nebula IC 2220 is 1,200 light-years away in the constellation of Carina, or the Keel.

Read more
See stunning images combining James Webb and Chandra X-ray data
james webb chandra images chandrawebb2 1

Since beginning science operations last summer, the James Webb Space Telescope has been providing a plethora of beautiful images of space. Now, NASA has shared a new view of some of those images, by combining infrared data from Webb with X-ray data from the Chandra X-Ray Observatory.

The four new images show a variety of cosmic objects like galaxies and nebulae, bringing together observations from different wavelengths to show features that wouldn't be visible in a single wavelength. As well as Webb and Chandra, the images also incorporate data from the Hubble Space Telescope, which operates in the visible light wavelength, the retired Spitzer Space Telescope which looked in the infrared, and the European Space Agency's XMM-Newton X-ray instrument and the European Southern Observatory's New Technology Telescope, which also operates in the visible wavelength.

Read more
Image of darkness and light shows new stars being born in Lupus 3 nebula
The two young, low-mass proto-stars HR 5999 and HR 6000 illuminate nearby dust, creating the reflection nebula Bernes 149. These stars grew out of the dusty dark cloud of Lupus 3, part of a larger complex of as many as nine dark clouds.

A gorgeous new image of a nebular 500 light-years away gives a peek into the process of star formation.

This image from the Dark Energy Camera shows both the dark cloud of Lupus 3 and the shining bright young stars of the nebula Bernes 149. The dark cloud here is essential to the star formation process, as it is a collection of gas and dust which provides the building blocks for new stars to be born. Known as a dark nebula because of its density, Lupus 3 obscures the light of the stars behind it, giving the impression of a swath of black across the starry sky.

Read more