Skip to main content

Hubble sees the dramatic collision of NASA’s DART spacecraft and an asteroid

Last year NASA tested out a new method for defending the planet from incoming objects by crashing a spacecraft into an asteroid. Recently, further analysis of data from the impact has shown more about what occurred during and after the impact, and how effective it was at changing the orbit of the asteroid.

The Hubble Space Telescope captured a series of images showing the aftermath of the impact, which have been put together into a video showing the bright flash of the impact and the emerging plume of material sent up from the asteroid:

Time-Lapse Video of Didymos-Dimorphos System

The data from Hubble is also shown in the form of three images. The first shows the scene around two hours after impact, with a cone of material called ejecta made up of around 1,000 tons of dust. The second image from 17 hours after impact shows how this cone of material interacts with the gravity of the other asteroid in the pair, called Didymos. Finally, the third image shows how the ejecta is pulled into a tail shape due to the effects of sunlight.

These three panels capture the breakup of the asteroid Dimorphos when it was deliberately hit by NASA's 1,200-pound Double Asteroid Redirection Test (DART) mission spacecraft on September 26, 2022. Hubble Space Telescope had a ringside view of the space demolition derby.
These three panels capture the breakup of the asteroid Dimorphos when it was deliberately hit by NASA’s 1,200-pound Double Asteroid Redirection Test (DART) mission spacecraft on September 26, 2022. Hubble Space Telescope had a ringside view of the space demolition derby. SCIENCE: NASA, ESA, STScI, Jian-Yang Li (PSI) IMAGE PROCESSING: Joseph DePasquale (STScI)

This view shows how the effects of the impact on the asteroid are dependent on it being a part of a binary system: two asteroids orbiting each other. “The DART impact happened in a binary asteroid system,” said lead author of a study on the ejecta, Jian-Yang Li of the Planetary Science Institute, in a statement. “We’ve never witnessed an object collide with an asteroid in a binary asteroid system before in real time, and it’s really surprising. I think it’s fantastic. Too much stuff is going on here. It’s going to take some time to figure out.”

More analysis of the data from the impact has been reported by NASA. The agency shared in an update that the impact altered the orbit of Dimorphos by 33 minutes, showing that this method can be effective at changing an asteroid’s trajectory. That means that if such an asteroid were ever to threaten Earth, we’d have an idea of how to deflect it — as long as it was spotted in time as several years of preparation are required, and provided it was on a similar scale of size to Dimorphos, which is around half a mile across.

“I cheered when DART slammed head-on into the asteroid for the world’s first planetary defense technology demonstration, and that was just the start,” said Nicola Fox, associate administrator for NASA’s Science Mission Directorate, in the update. “These findings add to our fundamental understanding of asteroids and build a foundation for how humanity can defend Earth from a potentially hazardous asteroid by altering its course.”

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble image of the week shows an unusual jellyfish galaxy
The jellyfish galaxy JO206 trails across this image from the NASA/ESA Hubble Space Telescope, showcasing a colorful star-forming disk surrounded by a pale, luminous cloud of dust. A handful of foreground bright stars with crisscross diffraction spikes stands out against an inky black backdrop at the bottom of the image. JO206 lies over 700 million light-years from Earth in the constellation Aquarius.

This week's image from the Hubble Space Telescope shows an unusual type of galaxy named for its aquatic look-alike: a jellyfish.

The jellyfish galaxy JO206 is shown below in an image taken using Hubble's Wide Field Camera 3 instrument. Located 700 million light-years away, in the constellation of Aquarius, this image of the galaxy shows both the bright center of the galaxy and its long tendrils reaching out toward the bottom right. It is these tendrils that give jellyfish galaxies their names, and they are formed through a process called ram pressure stripping.

Read more
Hubble scientists create tool for erasing satellite trails from images
This image captures the streak of an Earth-orbiting artificial satellite crossing Hubble's field of view during an observation of "The Mice" interacting galaxies (NGC 4676). A typical satellite trail is very thin and will affect less than 0.5% of a single Hubble exposure. Though in this case the satellite overlaps a portion of the target galaxy, the observation quality is not affected. That's because multiple exposures are taken of the same target. And the satellite trail is not in other frames. Developers at the Space Telescope Science Institute in Baltimore, Maryland, have software that identifies the bad pixels from the satellite photobombing, the extent to which they affect the image, and then flags them. When flagged, scientists can recover the full field of view. Even as the number of satellites increases over the decade, these tools for cleaning the images will still be applicable.

With ever-increasing numbers of satellites in the sky, astronomers have repeatedly expressed worry over how these satellites could impact scientific research. Earlier this year, a study of Hubble Space Telescope observations showed how some images were being ruined by streaks of light coming from satellites -- and while only a small percentage of Hubble images were affected, the authors raised concerns that with the projected number of satellites set to explode in the next decade, the problem could become serious.

Now, astronomers at the Space Telescope Science Institute (STScI), which runs Hubble, have come up with a tool to deal with satellite streaks in Hubble images. "We developed a new tool to identify satellite trails that is an improvement over the previous satellite software because it is much more sensitive. So we think it will be better for identifying and removing satellite trails in Hubble images," said Dave Stark of STScI in a statement.

Read more
NASA’s first crewed test flight of Starliner spacecraft delayed
Engineers working on Boeing's Starliner spacecraft.

NASA’s quest to have a second U.S.-operated spacecraft for ferrying astronauts to and from the International Space Station (ISS) has suffered another blow.

The expected July 21 launch of the first crewed test flight of Boeing’s CST-100 Starliner capsule has been called off following the recent discovery of two safety issues, the aerospace giant said on Thursday.

Read more