Skip to main content

Water map of Mars could help choose locations for future missions

Whether you’re thinking about the future of Mars and how to send humans there, or trying to understand its past and see how the planet became the way it is today, one particular feature is crucially important: water. Scientists know that there was once abundant water on Mars, but over time this evaporated away and left the planet a dry husk, with little to no liquid water on its surface today. But that water has left indications in the geology of the planet, and now the European Space Agency (ESA) has shared a water map of Mars that traces the planet’s history and points to potential resources for future missions.

The map uses data collected by two different Mars orbiters, ESA’s Mars Express and NASA’s Mars Reconnaissance Orbiter. Spectrometers on each of the orbiters have been collecting information on the location of what is called aqueous minerals, meaning rocks that have interacted with water in the past and which have formed minerals such as clays.

Detailed global map of hydrated mineral deposits on Mars.
Data from two Mars missions have been used to create the first detailed global map of hydrated mineral deposits on Mars. The map has been painstakingly created over the last decade using data from ESA’s Mars Express Observatoire pour la Mineralogie, l’Eau, les Glaces et l’Activité (OMEGA) instrument and NASA’s Mars Reconnaissance Orbiter Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument. ESA/Mars Express (OMEGA) and NASA/Mars Reconnaissance Orbiter (CRISM)

The map shows not only the locations of these minerals but also how abundant they are. And one of the biggest findings is that these minerals aren’t rare — in fact, there are hundreds of thousands of patches of minerals across the planet.

Recommended Videos

“This work has now established that when you are studying the ancient terrains in detail, not seeing these minerals is actually the oddity,” one of the researchers, John Carter, said in a statement.

This map is useful for assessing potential landing sites for future missions, whether crewed or robotic. Human crews will need to access water for a long-term Mars mission, and one way to do that is to bake aqueous minerals to extract the water they contain. But the clays are of scientific interest for robotic missions as well, as they are great for looking for signs of ancient life.

Studying how these minerals are spread across Mars helps us understand the planet’s history as well. Researchers are still debating exactly how long liquid water was present on the planet’s surface, and exactly what caused the planet to lose its water. This water map shows how complex that change was.

“I think we have collectively oversimplified Mars,” Carter said. “The evolution from lots of water to no water is not as clear cut as we thought, the water didn’t just stop overnight. We see a huge diversity of geological contexts, so that no one process or simple timeline can explain the evolution of the mineralogy of Mars. That’s the first result of our study. The second is that if you exclude life processes on Earth, Mars exhibits a diversity of mineralogy in geological settings just as Earth does.”

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
4 of Uranus’s icy moons could have liquid water oceans
Uranus is surrounded by its four major rings and 10 of its 27 known moons in this color-added view that uses data taken by the Hubble Space Telescope in 1998. A study featuring new modeling shows that four of Uranus’ large moons likely contain internal oceans.

When it comes to exploring planets in our solar system, most of the attention gets placed on those nearest to Earth which are easier to visit, and with powerful telescopes, we often observe the gas giants Jupiter and Saturn too. The more distant planets like Uranus and Neptune, however, are often overlooked and there's growing support among planetary scientists for sending a mission there. Now, new evidence gives even more impetus for a mission to Uranus, with a recent study showing that four of the planet's moons could host water.

Researchers from NASA's Jet Propulsion Laboratory reanalyzed data from the Voyager 2 mission which passed Uranus in the 1980s to look at the five largest of its 27 moons: Ariel, Umbriel, Titania, Oberon, and Miranda. Using computer modeling of how porous the surfaces are, they found that four of these moons likely have liquid water oceans beneath icy crusts.

Read more
Ingenuity and Perseverance snap photos of each other on Mars
The Ingenuity helicopter on the surface of Mars, in an image taken by the Perseverance rover. Ingenuity recently made its 50th flight.

Everyone's favorite Mars double act, the Ingenuity helicopter and the Perseverance rover, have been traveling together recently after spending several months apart. As they explore the site of an ancient river delta in the Jezero crater, the pair have snapped images of each other that were recently shared by NASA.

The Perseverance's cameras caught this great shot of Ingenuity, which, as noted in the rover's Twitter post, is now considerably dustier than it was when it first deployed from under the rover's belly two years ago. In its two years on the red planet, Ingenuity has made more than 50 flights, which is incredible when you consider that it was designed to perform just five flights. During that time, Ingenuity had to take a break from long flights to deal with the cold martian winter, but since the beginning of the year, the helicopter has been back, making some of its longest flights yet.

Read more
NASA’s InSight lander looks into Mars to study the planet’s core
This artist’s concept shows a cutaway of Mars, along with the paths of seismic waves from two separate quakes in 2021. Detected by NASA’s InSight mission, these seismic waves were the first ever identified to enter another planet’s core.

NASA's Mars InSight lander may have come to the end of its mission last year, but data from the lander is still being used to contribute to science. Data that the lander collected on marsquakes, seismic events that are similar to earthquakes, has been used to get the best look yet at Mars's core.

The lander was armed with a highly sensitive seismometer instrument that could detect seismic waves as they moved through the martian interior. By looking at the way in which these waves bounced off boundaries and moved at different speeds through different materials, scientists can work out what the inside of a planet is composed of. The latest findings show that the martian core is around 2,220 miles across, which is smaller than previously thought. The core is also denser than previously believed The results also showed that around one-fifth of the core, which is made up of liquid iron alloy, is composed of sulfur, oxygen, carbon, and hydrogen.

Read more