Skip to main content

Euclid dark matter telescope arrives at its destination orbit

The European Space Agency (ESA)’s Euclid space telescope has arrived at its orbit around the sun. Launched from Cape Canaveral on July 1, the telescope is now in at orbit around the sun at the L2 Lagrange point, where it joins other space telescopes such as the James Webb Space Telescope and the Gaia space telescope.

Webb and Gaia welcome Euclid to L2

The video above shows how Euclid will join the other space telescopes and how their orbits relate to each other. Located around 1 million miles from Earth, this complex-looking orbit is often used for space telescopes because of its high level of stability. Maintaining the orbit requires only a small amount of fuel, which is a limited resource for space missions, and it also allows the telescopes to stay on the opposite side of the sun from Earth. This means that the telescopes can face away from both the Earth and the sun, avoiding heat and light interference from these two sources.

This is important for missions like Webb as it avoids heat buildup because Webb needs to maintain a very cool operating temperature for its observations in the infrared. Whereas Euclid needs to have a very stable orbit, with no wobbles to introduce interference into its highly detailed observations of distant parts of the universe.

Euclid will be observing distant galaxies to build up a 3D map of all the dark matter in the universe. By determining its location by looking at its gravitational effects, scientists hope to learn more about the nature of dark matter.

Even though Euclid shares the L2 orbit with other space telescopes, there is plenty of room for all of them without risk of a collision. “The region around L2 is big and even though the orbits of these spacecraft seem to cross in the animation, in reality there is plenty of space and a collision can be easily avoided,” ESA writes. “For example, Webb and Gaia are between 400,000 and 1,100,000 km [250,000 and 700,000 miles] apart, depending on where they are in their respective orbits.”

With Euclid now at its destination, the next step of the mission is the commissioning phase in which the instruments are prepared for operations. This will take around three months, then the telescope can begin its science operations.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Spooky cobwebbed Hubble image helps investigate dark matter
Hundreds of small galaxies appear across this view. Their colours vary. Some are shades of orange, while others are white. Most appear as fuzzy ovals, but a few have distinct spiral arms. There are also many thin, long, orange arcs that curve around the centre of the image, where there is a prominent orange glow.

With Halloween coming up tomorrow, the Hubble Space Telescope team is celebrating by releasing a new Hubble image showing the dark cobwebs of galaxy cluster Abell 611. Located an incredible 3.2 billion light-years away, this view shows hundreds of galaxies that are bound together by gravity into one enormous structure.

Taken using Hubble's Advanced Camera for Surveys and Wide Field Camera 3 instruments, the image combines both visible light and infrared observations.

Read more
James Webb Space Telescope may have spotted its first supernova
The potential supernova spotted by the James Webb Space Telescope.

The James Webb firsts keep coming, with the new space telescope having recently spotted what could be the most distant galaxy ever observed. Now, it may have spotted its first supernova.

The potential supernova spotted by the James Webb Space Telescope. pace Telescope Science Institute
As reported by Inverse, researchers using Webb believe they have observed a supernova using the NIRCam instrument. They compared the Webb data to data collected using Hubble and found a bright object which could be a star that has just gone supernova.
A supernova occurs when a massive star runs out of fuel and comes to the end of its life. As the star collapses, it throws off much of its material in an enormous explosion which gives out large amounts of light. This light is so bright it can be spotted from great distances away. Webb spotted one such bright flash in the galaxy SDSS.J141930.11+5251593. The telescope made two observations of the galaxy five days apart, and in the second observation, the flash was less bright, suggesting it is dimming over time.
"We would need more time series data to make a determination, but the data we do have does match that of a supernova, so it's a very good candidate," lead author Mike Engesser of the Space Telescope Science Institute said to Inverse.
This finding is rather surprising, even with Webb's extreme sensitivity. Because supernovae are transient events, meaning they don't last for long, you have to get lucky to observe one when it happens. Although technically, the supernova happened billions of years ago, we are only just seeing it now because it takes time for the light to travel to us from the distant galaxy.
Webb wasn't designed to detect supernovae, but researchers are making the most of the data collected so far and are finding surprising uses for it. The advantage of looking at this kind of target with Webb is that it will be able to observe the area around the supernova to see its effects and the aftermath of such a large explosion.
Understanding more about supernovae is important not only for understanding the life cycles of stars, but also for measuring the expansion of the universe. A class of supernovae called Type 1a are used as "mile markers" for measuring distances because they have consistent levels of brightness and can be seen from great distances.

Read more
Here’s what the James Webb Space Telescope will set its sights on next
This landscape of “mountains” and “valleys” speckled with glittering stars is actually the edge of a nearby, young, star-forming region called NGC 3324 in the Carina Nebula. Captured in infrared light by NASA’s new James Webb Space Telescope, this image reveals for the first time previously invisible areas of star birth.

The world came together last week in a rare show of international unity to stare in wonder at the first scientific images produced by the James Webb Space Telescope. Decades in the making and the result of the efforts of thousands of people from around the globe, the telescope is set to revolutionize astronomy by allowing us to peer deeper into the cosmos than ever before.

Webb has the largest mirror ever launched into space, as well as the largest sunshield, and it is the most powerful space telescope ever built. The first images are just a taste of what this remarkable piece of technology is capable of doing. So to find out more about what future scientific research will be enabled by this behemoth, we spoke to Mark McCaughrean, Webb Interdisciplinary Scientist at the European Space Agency.

Read more