Skip to main content

Astronomers discover bizarre exoplanet orbiting three stars

Astronomers have identified a cosmic oddity: What may be the first planet ever discovered that orbits three stars. The GW Ori system is a triple star system, with three stars bound to each other by gravity, and recent observations of the dust ring around the stars suggest that there is a large planet orbiting all three of them in what is called a circumtriple orbit.

In the image below, you can see the dust rings around the triple star system which gave astronomers a clue that there may be a planet orbiting there. There is a noticeable gap in the dust ring, which suggests the presence of a massive planet. The image on the left was taken using the Atacama Large Millimeter/submillimeter Array (ALMA) telescope in Chile, and has been processed to show the dust rings in the best clarity. The image on the right shows how the innermost ring casts a shadow across the rest of the dust ring.

GW Orionis, a triple star system with a mysterious gap in its surrounding dust rings. UNLV astronomers hypothesize the presence of a massive planet in the gap, which would be the first planet ever discovered to orbit three stars. The left image, provided by the Atacama Large Millimeter/submillimeter Array (ALMA) telescope, shows the disc’s ringed structure, with the innermost ring separated from the rest of the disc. The observations in the right image show the shadow of the innermost ring on the rest of the disc. UNLV astronomers used observations from ALMA to construct a comprehensive model of the star system.
An image of GW Orionis, a triple star system with a mysterious gap in its surrounding dust rings. ALMA (ESO/NAOJ/NRAO), ESO/Exeter/Kraus et al.

To understand this unusual system, astronomers from the University of Nevada, Las Vegas, used the data collected by ALMA to create a model of the system. They considered various possibilities of what could have caused the gap in the dust rings, such as the idea it could have been caused by the gravitational forces of the three stars in the center of the system.

But the most likely explanation for the finding is the presence of at least one large planet, similar in size and mass to Jupiter. Although the system is too far away for the planet to be detected directly, this was the model which best fitted the data. The researchers hope to collect more observations using ALMA in the future to confirm whether there is in fact a planet there.

“It’s really exciting because it makes the theory of planet formation really robust,” lead author Jeremy Smallwood said in a statement. “It could mean that planet formation is much more active than we thought, which is pretty cool.”

The research is published in the journal Monthly Notices of the Royal Astronomical Society.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb telescope gets a view of the ‘white whale’ of exoplanet research
This artist’s concept depicts the planet GJ 1214 b, a “mini-Neptune” with what is likely a steamy, hazy atmosphere. A new study based on observations by NASA’s Webb telescope provides insight into this type of planet, the most common in the galaxy.

Studying other planets is difficult not only because they are so far away, but also because they can have properties that make taking readings much harder. Here in our solar system, we only have scant information about the surface of Venus because its thick atmosphere makes it hard to view. Being 50 light-years away, the planet GJ 1214 b has proved similarly tricky, defying 15 years of attempted observations due to its hazy nature.

But now, the James Webb Space Telescope has been able to peer into the planet's atmosphere for the first time, revealing the secrets of this mysterious place. It's known as a mini-Neptune because it has a thick atmosphere and layers of ice like Neptune. Only around three times the diameter of the Earth, the planet likely has lots of water, but it is located in the atmosphere, not on the surface, due to its high surface temperature.

Read more
Hubble observes weird star system with three off-kilter, planet-forming disks
This illustration is based on Hubble Space Telescope images of gas and dust discs encircling the young star TW Hydrae. We have an oblique view of three concentric rings of dust and gas. At the centre is the bright white glow of the central star. The reddish-coloured rings are inclined to each other and are therefore casting dark shadows across the outermost ring.

Planets form from large disks of dust and gas that collect around their host stars. Billions of years ago, our solar system would have looked like a single point of bright light coming from the sun, with a disk of matter swirling around it that eventually clumped into planets. To learn about how our solar system formed, it's helpful to look at other systems that are currently going through this process -- such as TW Hydrae, a system located 200 light-years away and turned face-on toward us, making it the perfect place to observe planetary formation.

But there's something odd about the TW Hydrae system. In 2017, astronomers first noticed a strange shadow that was visible on the disk of dust and gas surrounding the star. While such shadows are typically from a planet formed within the disk, in this case the shadow's shape and movement suggested it was actually from a second disk, located within the first disk and tilted at a different angle. Now, astronomers think they have spotted evidence of a third disk, with all three stacked up and creating a complex pattern of shadows.

Read more
Astronomers watch a preview of the destruction of the Earth
Astronomers using the Gemini South telescope in Chile, operated by NSF’s NOIRLab, have observed the first compelling evidence of a dying Sun-like star engulfing an exoplanet. The “smoking gun” of this event was seen in a long and low-energy outburst from the star — the telltale signature of a planet skimming along a star’s surface. This never-before-seen process may herald the ultimate fate of Earth when our own Sun nears the end of its life in about five billion years.

Astronomers recently caught the grisly sight of an exoplanet being devoured by its star, in a preview of what will eventually happen to the Earth. The sun-like star is located within our galaxy, around 12,000 light-years away, and has puffed up into an end-of-life state called a red giant. As it grows, it expands outward, which is how it was able to swallow the Jupiter-sized planet that had been in orbit around it.

The researchers were able to spot the event because of the distinctive brightening pattern of the star, which is similar to what we can expect will eventually happen to our sun. “We are seeing the future of the Earth,” said lead author of the research, Kishalay De of the Massachusetts Institute of Technology (MIT), in a statement. “If some other civilization was observing us from 10,000 light-years away while the sun was engulfing the Earth, they would see the sun suddenly brighten as it ejects some material, then form dust around it, before settling back to what it was.”

Read more