Skip to main content

Astronomers discover a rare hot Neptune planet that ‘shouldn’t exist’

Astronomers have discovered a planetary oddity: An exoplanet of an extremely rare type called a hot Neptune.

Hot Neptunes are planets around the size of Neptune which lie close to their stars. Astronomers think the reason they are so rare could be because planets of this size rapidly lose their atmospheres when they are close to their stars, and they are quickly eroded down to Earth-size. Hot Neptunes are so rare that astronomers even refer to the area close to a star as a “Neptune desert.”

But now, the team from the University of Kansas has spotted one such hot Neptune exoplanet in data from NASA’s TESS and Spitzer missions. Planet LTT 9779b was investigated using a technique called phase curve analysis, in which the infrared light being emitted by the planet is measured to see which parts of the planet are hottest.

“For the first time, we measured the light coming from this planet that shouldn’t exist,” Ian Crossfield, lead author of the paper, said in a statement. “This planet is so intensely irradiated by its star that its temperature is over 3,000 degrees Fahrenheit and its atmosphere could have evaporated entirely. Yet, our Spitzer observations show us its atmosphere via the infrared light the planet emits.”

This artist's impression shows the LTT9779 system approximately to scale, with the hot Neptune-sized planet at left and its bright, nearby star at right. The trail of material streaming off of the planet is hypothetical but likely, based on the intense irradiation of this planet.
This artist’s impression shows the LTT9779 system approximately to scale, with the hot Neptune-sized planet at left and its bright, nearby star at right. The trail of material streaming off of the planet is hypothetical but likely, based on the intense irradiation of this planet. Ethen Schmidt | University of Kansas

As well as being an unusual find, the planet’s location leads to some bizarre features as well. “This planet doesn’t have a solid surface, and it’s much hotter even than Mercury in our solar system — not only would lead melt in the atmosphere of this planet, but so would platinum, chromium, and stainless steel,” Crossfield said. “A year on this planet is less than 24 hours — that’s how quickly it’s whipping around its star. It’s a pretty extreme system.”

As an unusual object, the planet is a prime target for follow-up study using the upcoming James Webb Space Telescope. And by using new techniques to examine the planet’s atmosphere, astronomers can develop more accurate tools for searching for habitable planets in the future.

“As someone who studies these, there’s just a lot of interesting planetary science we can do in measuring the properties of these planets — just like people study the atmospheres of Jupiter, Saturn and Venus — even though we don’t think those will host life,” Crossfield said. “They’re still interesting, and we can learn about how these planets formed and the broader context of planetary systems.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Astronomers spot a new planet orbiting our neighboring star
This artist’s impression shows a close-up view of Proxima d, a planet candidate recently found orbiting the red dwarf star Proxima Centauri, the closest star to the Solar System.

At just over four light-years away, the low-mass star Proxima Centauri is practically next door to us, cosmically speaking. It is known to host two exoplanets, but recent research using the European Southern Observatory’s Very Large Telescope (ESO’s VLT) has shown that these two planets may have a baby brother, in the form of one of the lightest exoplanets ever found.

The newly discovered planet, called Proxima d, orbits extremely close to its star at just 2.5 million miles away -- less than one-tenth of the distance between Mercury and the sun. It is so close that it takes just five days to complete an orbit, meaning it is too close to be in the habitable zone (where liquid water could be present on its surface).

Read more
Citizen scientists help discover a Jupiter-like planet 379 light-years away
This illustration depicts a Jupiter-like exoplanet called TOI-2180 b. It was discovered in data from NASA's Transiting Exoplanet Survey Satellite.

Much of the work done in astronomy requires large groups of people co-operating and working together to make new discoveries. While most of that work is done by professional astronomers, there are some occasions where members of the public help as well. Recently, citizen scientists have helped comb through data from a NASA telescope to identify a gas giant planet located 379 light-years away.

The team of citizen scientists used data from the Transiting Exoplanet Survey Satellite, or TESS, to identity planet TOI-2180 b. It orbits a star with a similar mass to our sun, and a year there lasts 261 days, which makes it one of the further-out gas giants discovered outside the solar system. “Discovering and publishing TOI-2180 b was a great group effort demonstrating that professional astronomers and seasoned citizen scientists can successfully work together,” said Tom Jacobs, one of the citizen scientists who volunteered for the project, in a statement. “It is synergy at its best.”

Read more
Exoplanet with eccentric orbit discovered in the habitable zone of a red dwarf
The SAINT-EX telescope

Astronomers have found a planet in the habitable zone of a red dwarf star, but its orbit is so elongated that it would have wildly variable temperatures and likely couldn't support life.

The planet, named TOI-2257 b, was first spotted using data from NASA's planet-hunting telescope TESS (Transiting Exoplanet Survey Satellite) and then observed in more detail using the Las Cumbres Observatory Global Telescope and the SAINT-EX telescope in Mexico. Using the SAINT-EX observations, the researchers were able to confirm that a planet was orbiting the red dwarf star every 35 days.

Read more