Skip to main content

Hubble watches an extreme exoplanet being stripped by its star

Of the many strange exoplanets discovered to date, one of the most extreme has to be a world called AU Mic b. This Neptune-sized planet orbits close enough to its star that a year there lasts just over a week, and it is bombarded by dramatic flares from its host star which cook the planet with radiation.

Recently, Hubble observed this system to learn more about the relationship between the exoplanet and its star, technically called AU Microscopii.  The planet’s hydrogen atmosphere is blown away by radiation from the star, but there were confusing findings that seemed to show that no atmosphere was being lost at some times, but significant amounts of atmosphere were lost at other times.

This artist's illustration shows a planet (dark silhouette) passing in front of the red dwarf star AU Microscopii.
This artist’s illustration shows a planet (dark silhouette) passing in front of the red dwarf star AU Microscopii. The planet is so close to the eruptive star a ferocious blast of stellar wind and blistering ultraviolet radiation is heating the planet’s hydrogen atmosphere, causing it to escape into space. Four times Earth’s diameter, the planet is slowly evaporating its atmosphere, which stretches out linearly along its orbital path. This process may eventually leave behind a rocky core. The illustration is based on measurements made by the Hubble Space Telescope. NASA, ESA, Joseph Olmsted (STScI)

“We’ve never seen atmospheric escape go from completely not detectable to very detectable over such a short period when a planet passes in front of its star,” said lead researcher Keighley Rockcliffe of Dartmouth College in a statement. “We were really expecting something very predictable, repeatable. But it turned out to be weird. When I first saw this, I thought ‘That can’t be right.'”

This strange variability could be due to changes in the flares given off by the star. The star is very young to host planets, at less than 100 million years old, and its flares are caused by the interaction of magnetic fields and the stellar atmosphere. This creates an extreme stellar wind effect which blows away the atmosphere of the nearby planet.

The researchers suggest that the strange variation in the planet’s atmospheric loss could be due to a particularly strong solar flare occurring shortly before Hubble took its measurements which could have ionized the hydrogen coming off the planet, making it invisible to Hubble’s instruments. Or it could be that the stellar winds do actually cause the atmospheric loss to vary considerably.

The researchers are interested in learning about how exoplanets fare in extreme radiation environments like this one.

“We want to find out what kinds of planets can survive these environments. What will they finally look like when the star settles down? And would there be any chance of habitability eventually, or will they wind up just being scorched planets?” said Rockcliffe. “Do they eventually lose most of their atmospheres and their surviving cores become super-Earths? We don’t really know what those final compositions look like because we don’t have anything like that in our solar system.”

The research is published in The Astronomical Journal.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Watch this SpaceX Falcon 9 booster takes its 12th ride to space
SpaceX launches a Falcon 9 rocket on June 18, 2023.

SpaceX successfully launched its latest mission from the Kennedy Space Center in Florida on Sunday evening.

The mission sent an Indonesian communications satellite to orbit using a Falcon 9 booster on its 12th flight. The rocket blasted off the launchpad at 6:21 p.m. ET following a delay of 15 minutes due to strong winds.

Read more
This exoplanet is over 2,000-degrees Celsiu, has vaporized metal in its atmosphere
This artist impression illustrates how astronomers using the Gemini North telescope, one half of the International Gemini Observatory operated by NSF’s NOIRLab, have made multiple detections of rock-forming elements in the atmosphere of a Jupiter-sized exoplanet, WASP-76b. The so-called “hot Jupiter” is perilously close to its host star, which is heating the planet’s atmosphere to astounding temperatures and vaporized rock-forming elements such as magnesium, calcium and iron, providing insight into how our own Solar System formed.

Astronomers have studied a strange, puffy, scorching-hot planet located 600 light-years away, and have seen elements that would normally form rocks, but are so hot that they have vaporized into the atmosphere.

The planet, named WASP-76b, is around the mass of Jupiter, but orbits its star 12 times closer than Mercury is to the sun. Being so close, its atmosphere its heated to a scorching 2,000- degrees Celsius, which makes it puff up to a large size that's six times the volume of Jupiter. These high temperatures also give astronomers the opportunity to observe elements that would normally be hard to identify in the atmosphere of a gas giant.

Read more
Tatooine-like exoplanet orbits two stars in rare astronomical discovery
An artist's illustration shows that the stars in the TOI 1338 system make an eclipsing binary — they circle each other in our plane of view.

Anyone who has watched Star Wars has likely found themselves enchanted by the views from Luke's home planet of Tatooine, with its pair of suns visible in the sky over the desert. As visually striking as this concept it, it isn't purely fantasy: there do exist planets that orbit two stars, called circumbinary systems, and standing on one of these planets you would see two stars in the sky.

Astronomers recently discovered one such planet, named BEBOP-1c. Located in the same system as a previously discovered planet, TOI-1338b, the team was trying to measure the mass of the older known planet when they discovered the new one. “Only 12 circumbinary systems are known so far, and this is only the second that hosts more than one planet,” said one of the researchers, David Martin of Ohio State University, in a statement.

Read more