Skip to main content

Hubble has a computer problem and it’s proving difficult to fix

The Hubble Space Telescope is deployed on April 25, 1990 from the space shuttle Discovery. Avoiding distortions of the atmosphere, Hubble has an unobstructed view peering to planets, stars and galaxies, some more than 13.4 billion light years away.
The Hubble Space Telescope is deployed on April 25, 1990, from the space shuttle Discovery. Avoiding distortions of the atmosphere, Hubble has an unobstructed view peering to planets, stars, and galaxies, some more than 13.4 billion light-years away. NASA/Smithsonian Institution/Lockheed Corporation

The beloved Hubble Space Telescope is experiencing a computer problem and is currently not collecting scientific data. NASA engineers are working on fixing the issue, but it’s proving difficult to get the 30-year-old telescope operating as it should.

The problem began on Sunday, June 13, when the Hubble payload computer stopped working. This computer, built in the 1980s, controls all of the telescope’s science instruments, so it’s an essential part of the Hubble system. When the computer stopped responding, all of the science instruments were automatically put into safe mode.

The first thing the NASA Hubble team did to try and fix the problem was just what we all do when a computer stops working — turn it off and turn it on again. They restarted the computer on Monday, June 14, but that didn’t fix the issue. They thought that the problem might be a degrading memory module, so they got ready to switch to a backup module instead. But that didn’t work either, as the command to switch to the backup wasn’t accepted.

The Hubble team continued to work on running diagnostics and bringing the memory module online through last week. They found that the issue might actually lie in a different piece of hardware, the Standard Interface (STINT), or with the Central Processing Module (CPM), with the issue with the memory module being a symptom of this underlying problem.

There are two payload computers in the telescope, the primary one and a backup, which both use the same type of hardware. So the team tried turning on the backup computer this week, but it had the same problem as the primary computer. Even though it didn’t work, the fact the same error happened with both computers gives the team more information on what might be wrong.

“Since it is highly unlikely that all individual hardware elements have a problem, the team is now looking at other hardware as the possible culprit, including the Command Unit/Science Data Formatter (CU/SDF), another module on the SI C&DH,” NASA wrote. “The CU formats and sends commands and data to specific destinations, including the science instruments. The SDF formats the science data from the science instruments for transmission to the ground. The team is also looking at the power regulator to see if possibly the voltages being supplied to hardware are not what they should be. A power regulator ensures a steady constant voltage supply. If the voltage is out of limits, it could cause the problems observed.”

The team intends to continue its testing over the next week. Fingers crossed for this very special piece of scientific equipment to be fixed soon so it can get back to capturing stunning images of space.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble scientists create tool for erasing satellite trails from images
This image captures the streak of an Earth-orbiting artificial satellite crossing Hubble's field of view during an observation of "The Mice" interacting galaxies (NGC 4676). A typical satellite trail is very thin and will affect less than 0.5% of a single Hubble exposure. Though in this case the satellite overlaps a portion of the target galaxy, the observation quality is not affected. That's because multiple exposures are taken of the same target. And the satellite trail is not in other frames. Developers at the Space Telescope Science Institute in Baltimore, Maryland, have software that identifies the bad pixels from the satellite photobombing, the extent to which they affect the image, and then flags them. When flagged, scientists can recover the full field of view. Even as the number of satellites increases over the decade, these tools for cleaning the images will still be applicable.

With ever-increasing numbers of satellites in the sky, astronomers have repeatedly expressed worry over how these satellites could impact scientific research. Earlier this year, a study of Hubble Space Telescope observations showed how some images were being ruined by streaks of light coming from satellites -- and while only a small percentage of Hubble images were affected, the authors raised concerns that with the projected number of satellites set to explode in the next decade, the problem could become serious.

Now, astronomers at the Space Telescope Science Institute (STScI), which runs Hubble, have come up with a tool to deal with satellite streaks in Hubble images. "We developed a new tool to identify satellite trails that is an improvement over the previous satellite software because it is much more sensitive. So we think it will be better for identifying and removing satellite trails in Hubble images," said Dave Stark of STScI in a statement.

Read more
Juice spacecraft has overcome its stuck antenna issue and is ready for Jupiter
An artist's impression of the Juice spacecraft fully deployed.

The European Space Agency's Juice spacecraft is now fully deployed and on its way to study the icy moons of Jupiter. Launched in April, the Jupiter Icy Moons Explorer spacecraft has been through a complex and at times challenging deployment process over the past six weeks to unfold into its final form for its journey to Jupiter.

Large spacecraft like Juice need to be folded up during launch so that they can fit into the nosecone of their launch vehicle -- in this case, an Ariane 5 rocket. Once the spacecraft has been deployed from the rocket, it can begin the process of unfolding while it travels through space.

Read more
Hubble goes hunting for elusive medium-sized black holes
A Hubble Space Telescope image of the globular star cluster, Messier 4. The cluster is a dense collection of several hundred thousand stars. Astronomers suspect that an intermediate-mass black hole, weighing as much as 800 times the mass of our Sun, is lurking, unseen, at its core.

There's something odd about the black holes discovered to date. We've found plenty of smaller black holes, with masses less than 100 times that of the sun, and plenty of huge black holes, with masses millions or even billions of times that of the sun. But we've found hardly any black holes in the intermediate mass range, arguably not enough to confirm that they even exist, and it's not really clear why.

Now, astronomers are using the Hubble Space Telescope to hunt for these missing black holes. Hubble has previously found some evidence of black holes in this intermediate range, and now it is being used to search for examples within a few thousand light-years of Earth.

Read more